• Title/Summary/Keyword: DInSAR (Differential SAR Interferometry)

Search Result 17, Processing Time 0.03 seconds

Remote Sensing of Soil Moisture Change Using a Differential Interferometry Technique (차분 간섭 기법을 이용한 지표면 수분함유량 변화 탐지)

  • Park, Sin-Myeong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.459-465
    • /
    • 2013
  • This paper presents a differential interferometry technique for soil moisture change detection by measuring surface-height variation. COSMO-SkyMed SAR images were used to verify the DInSAR(differential interferometric SAR) technique. The soil penetration depth changes according to soil moisture, that causes phase change of the received signal. The height of soil surface and its displacement can be detected by a radar interferometry technique using phase difference of two received signals. To retrieve displacement variation, one of three SAR images is used as a reference image. Reference image and other two images are processed by the differential interferometry technique in the same area. The soil moisture was measured for the test sites to verify the DInSAR technique. The penetration depth is calculated by using the in-situ measured soil moisture data and it is compared with the displacement values acquired by the DInSAR technique.

Refinement of Low Resolution DEM Using Differential Interferometry

  • Kim Chang-Oh;Lee Dong-Cheon;Kim Jeong-Woo;Kim Sang-Wan;Won Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.522-525
    • /
    • 2004
  • Interferometry SAR (InSAR) is a technique to generate topographic map from complex data pairs observed by antennas at different locations. However, to obtain topographic information using InSAR is difficult task because it requires series of complicated process including phase unwrapping and precise recovery of the SAR geometry. Especially, accuracy of the DEM (Digital Elevation Model) produced by repeat pass single SAR pair could be influenced by atmospheric effect. Recently, a new InSAR technique to improve accuracy of DEM has been introduced that utilizes low resolution DEM with a number of SAR image pairs. The coarse DEM plays an important role in reducing phase unwrapping error caused by layover and satellite orbit error. In this study, we implemented DInSAR (Differential InSAR) method which combines low resolution DEMs and ERS tandem pair images. GTOPO30 DEM with 1km resolution, SRTM-3 DEM with 100m resolution, and DEM with 10m resolution derived from 1:25,000 digital vector map were used to investigate feasibility of DInSAR. The accuracy of the DEMs generated both by InSAR and DInSAR was evaluated.

  • PDF

Subsidence Measurements of Reclaimed Coastal Land using Satellite Radar Interferometry (위성 레이더 인터훼로메트리를 이용한 연안 매립지의 지반침하량 측정)

  • Kim, Sang-Wan;Won, Joong-Sun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.219-226
    • /
    • 2004
  • We measure subsidences occurred in a reclaimed coastal land, Noksan industrial complex, by using JERS-1 SAR (1996-1998) and RADARSAT-1 SAR (2002-2003) dataset. SAR with a high spatial resolution (about several or several tens meter) can reveal the two-dimensional distribution of settlement that would be bardly estimated from in situ measurements. The DInSAR results show significant deformation signal associated with soil consolidation. Accuracy of the settlements estimated by 2-pass differential interferometry (DInSAR) is evaluated using the measurements of settlement gauge. A two-dimensional subsidence map is constructed from 7 qualified pairs. Comparing the JERS-1 radar measurements with the ground truth data yields the correlation coefficient of 0.87 (RMSE of 1.44 cm). The regression line shows the gradient of 1.04 and intercepts close to the origin, which implies that the unbiased settlement can be measured by DInSAR technique. The residual settlements are also detected from RADARSAT-1 pairs. The extent and amount of the settlements are matched well with ground truth data.

  • PDF

Application of 2-pass DInSAR to Improve DEM Precision (DEM 정밀도 향상을 위한 2-pass DInSAR 방법의 적용)

  • 윤근원;김상완;민경덕;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.231-242
    • /
    • 2001
  • In 2-pass differential SAR interferometry(DInSAR), the topographic phase signature can be removed by using a digital elevation model(DEM) to isolate the contribution of deformation from interferometric phase. This method has an advantage of no unwrapping process, but applicability is limited by precision of the DEM used. The residual phase in 2-pass differential interferogram accounts for error of DEM used in the processing provided that no actual deformation exits. The objective of this paper is a preliminary study to improve DEM precision using low precision DEM and 2-pass DInSAR technique, and we applied the 2-pass DInSAR technique to Asan area. ERS-1/2 tandem complex images and DTED level 0 DEM were used for DInSAR, and the precision of resulting DEM was estimated by a 1:25,000 digital map. The input DEM can be improved by simply adding the DInSAR output to the original low precision DEM. The absolute altitude error of the improved DEM is 9.7m, which is about the half to that of the original DTED level 0 data. And absolute altitude error of the improved DEM is better than that from InSAR technique, 15.8m. This approach has an advantage over the InSAR technique in efficiently reducing layover effects over steep slope region. This study demonstrates that 2-pass DInSAR can also be used to improve DEM precision.

SUBSIDENCE AT DUK-PO AREA REVEALED BY DINSAR AND INTERFEROGRAM STACKING

  • Hong, Sang-Hoon;Kim, Sang-Wan;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.308-311
    • /
    • 2002
  • Radar interferometric phase is sensitive to both ground topography and coherent surface displacement. The basic tactics of differential interferometric synthetic aperture radar (DInSAR) technique are to separate the two effects. Applications of DInSAR to Duk-Po area in Busan were studied. In the study area, an abrupt subsidence, possibly caused by sub-way construction, was observed by JERS-1 SAR interferometry. Differential interferograms were generated using twenty-three JERS-1 SAR data acquired between April 24, 1992, and August 7, 1998. Because the area is relatively flat with little topographic relief the topographic effects were not removed. A phase filtering and interferogram techniques were applied to increase fringe clarity as well as to decrease decorrelation error. The stacking improves the quality of interferograms especially when the displacement is discontinuous. The interferograms clearly show the evidence of subsidence along Duk-Po subway railroad. These results demonstrate that the interferogram stacking technique can improve the detectability of radar interferometry to an abrupt displacement and DInSAR is useful to geological engineering applications.

  • PDF

Generation and Assessment of DEM from InSAR and Differential InSAR (영상 레이더 간섭기법 및 차분간섭기법을 이용한 수치고도모델 생성과 정확도 평가)

  • Kim Jeong woo;Kim Chang Oh
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • SAR interferometry (InSAR) is a technique to generate 3-Dimentional spatial information using complex data pairs observed by antennas at different locations. In case of the Two-pass differential SAR inteferometry (DInSAR), the topographic phase signature can be separated from the contribution of surface deformation in the interferometric phase. In this study, InSAR and DInSAR were implemented with ERS- l/2 tandem pair to produce DEM. The accuracy of the Resulting DEMs was analyzed.

Ground Subsidence Estimation in a Coastal Reclaimed Land Using JERS-1 L-band SAR Interferometry (JERS-1 L-band SAR Interferometry 를 이용한 연안매립지 지반침하 관측)

  • 김상완;이창욱;원중선
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.465-478
    • /
    • 2002
  • We measured subsidences occurred in a coastal reclaimed land, Noksan industrial complex, from May 2, 1996 to February 21, 1998, using 5 interferograms of JERS-1 L-band SAR. SAR with a spatial resolution of about 16 m can detect the two-dimensional distribution of subsidence that is difficult to be estimated from in situ measurements. Accuracy of the subsidences estimated by 2-pass DInSAR was evaluated using the measurements of Magnetic Probe Extensometer (accuracy of :${\pm}$1 mm) installed at 42 stations. DInSAR measurements were well correlated with the field measurements showing an average correlation coefficient of 0.77. The correlation coefficient was further improved to be 0.87 (with RMSE of 1.44 cm) when only highly coherenced (>0.5) pixels were used. The slope of regression line was 1.04, very close to the unit value. In short, DInSAR measurements have a good linear relation with field measurements so that we can effectively detect a subsidence in the coastal reclaimed area especially using pixels of high coherence (>0.5). The maximum accumulated subsidence was about 60 cm in the study area, while the subsidence in the northern and south western areas were less than 20 cm. The resuts show that DInSAR is extremely useful for geotechnical applications as well as observation of natural deformation.

Feasibility Studies of DInSAR in the Northeastern Kyungsang Basin, Korea

  • Lee, C.W.;Kim, S.W.;Jung, H.C.;Won, J.S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1070-1072
    • /
    • 2003
  • This study focuses on examing the feasibility of differential SAR interferometry (DInSAR) in the Northeastern Kyungsang Basin, Korea. Major faults in the Kyungsang Basin such as Yangsan fault, Dongrae fault, and Ulsan fault had developed during Cretaceous, and the activeness of these faults is still controversial in Korean geology community. We attempt to measure displacements in the study area by applying DInSAR techniques to JERS-1 SAR data sets. Some surface displacements are recognized by DInSAR method at Young-il Bay in which the POSCO Company locates, although the displacements may not be directly associated with geologic structures. We also discuss atmospheric effects for the techniques used.

  • PDF

A Study on the Enhancement of DEM Resolution by Radar Interferometry (레이더 간섭기법을 이용한 수치고도모델 해상도 향상에 관한 연구)

  • Kim Chang-Oh;Kim Sang-Wan;Lee Dong-Cheon;Lee Yong-Wook;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.287-302
    • /
    • 2005
  • Digital Elevation Models (DEMs) were generated by ERS-l/2 and JERS-1 SAR interferometry in Daejon area, Korea. The quality of the DEM's was evaluated by the Ground Control Points (GCPs) in city area where GCPs were determined by GPS surveys, while in the mountain area with no GCPs, a 1:25,000 digital map was used. In order to minimize errors due to the inaccurate satellite orbit information and the phase unwrapping procedure, a Differential InSAR (DInSAR) was implemented in addition to the traditional InSAR analysis for DEM generation. In addition, DEMs from GTOPO30, SRTM-3, and 1:25,000 digital map were used for assessment the resolution of the DEM generated from DInSAR. 5-6 meters of elevation errors were found in the flat area regardless of the usage and the resolution of DEM, as a result of InSAR analyzing with a pair of ERS tandem and 6 pairs of JERS-1 interferograms. In the mountain area, however, DInSAR with DEMs from SRTM-3 and the digital map was found to be very effective to reduce errors due to phase unwrapping procedure. Also errors due to low signal-to-noise ratio of radar images and atmospheric effect were attenuated in the DEMs generated from the stacking of 6 pairs of JERS-1. SAR interferometry with multiple pairs of SAR interferogram with low resolution DEM can be effectively used to enhance the resolution of DEM in terms of data processing time and cost.

Experimental Study on DEM Extraction Using InSAR and 3-Pass DInSAR Processing Techniques (InSAR 및 3-Pass DInSAR 처리기법을 적용한 DEM 추출에 대한 실험 연구)

  • Bae, Sang-Woo;Lee, Jin-Duk
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.176-186
    • /
    • 2007
  • As SAR data have the strong point that is not influenced by weather or light amount in comparison with optical sensor data, they are highly useful for temporary analysis and can be collected in time of unforeseen circumstances like disaster. This study is to extract DEM from L-band data of JERS-1 SAR imagery using InSAR and DInSAR processing techniques. As a result of analyzing the extracted coherence and interferogram images, it was shown that the DInSAR 3-pass method produces more suitable coherence values than the InSAR method. The accuracies of DEM extracted from the SAR data were evaluated by employing the DEM derived from the digital topographic maps of 1:5000 scale as reference data. And it was ascertained that baselines between antenna locations largely affect the accuracy of extracted DEM.