• Title/Summary/Keyword: DISTRIBUTED HEAT SOURCE

Search Result 42, Processing Time 0.032 seconds

Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.315-327
    • /
    • 2021
  • Here, in this research we have studied a two dimensional problem in a homogeneous orthotropic magneto-thermoelastic medium with higher order dual-phase-lag heat transfer with combined effects of rotation and hall current in generalized thermoelasticity due to time harmonic sources. As an application the bounding surface is subjected to uniformly distributed and concentrated loads (mechanical and thermal source). Fourier transform technique is used to solve the problem. The expressions for displacement components, stress components and temperature change are derived in frequency domain. Numerical inversion technique has been used to obtain the results in physical domain. The effect of frequency has been depicted with the help of graphs.

Biogas-Microturbine Distributed Generation Developement at Gong-Ju Public Livestock Wastewater Treatment Facility (공주 축산폐수공공처리장에서의 바이오가스-마이크로터빈 분산발전시스템 개발)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Lee, Ki-Chul;Kang, Ho;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.229-234
    • /
    • 2008
  • Korea Electric Power Corporation (KEPCO) has started the nation's first biogas-microturbine project in the city of Gongju as an effort to encourage the utilization of wasted biogas containing useful energy source in the form of $CH_4$. The goal of the project is to set up the biogas microturbine co-generation system for utilizing biogas as an energy source and improving the economics of the wastewater treatment plant. Wastewater treatment processes were investigated in depth to find improvement possibility. Changes in internal recirculation ratio and pre-treatment degree are needed to optimize plant operation and biogas production. Biogas pre-treatment system satisfies Capstone's fuel condition requirement with the test result of 99.9% and 90.2% of hydrogen sulphide and ammonia is removal performance. Installation of microturbine and manufacture of heat exchanger to warm anaerobic digester has been done successfully. Expected economic profit produced by the system is coming from energy saving including electricity 115,871kWh/year and heat contained in exhaust gas 579GJ/year.

  • PDF

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

Pb Isotopic Composition of the Ore Deposits Distributed in Jeonbuk Province (전북 광상의 납 동위원소 조성에 대한 고찰)

  • Chung Jae-Il;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.81-89
    • /
    • 2006
  • Pb isotopic compositions were determined from the ore deposits of Beonam, Dongjin, Jeoksang and Bukchang mines distributed within Jeolabuk-do. As a result, individual mine shows significantly different values of Pb isotopic compositions from each other. Pb isotopic values of the Beonam, Bukchang and Dongjin mines altogether from linear variation, but it is too steep to represent their formation age. Instead, such trend suggests that these ore leads were originated from binary mixing. Precambrian basement rocks and Mesozoic granitoids are suggested for such two end-members. The relative contribution of lead from each source seems to be quite different for each ore deposit, implying that the circulation of the ore-forming fluid was very localized when they were formed. In the case of Dongjin mine it seems significant portion of the ore leads were originated from the basement rocks, which suggests that related igneous rock seems to have acted as heat source to generate circulation of the fluid rather than the source of the ore-forming elements.

A study on the development of thermal environment prediction program in tunnel of the subway (지하철 터널내 열환경 예측 프로그램 개발에 관한 연구)

  • Kim, J.R.;Kim, D.G.;Kum, J.S.;Choi, K.H.;Jeong, H.M.;Park, J.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.504-516
    • /
    • 1997
  • Recently scientists and engineers are developing a system to get waste heat of low-temperature level with advanced heat pump, which have not been used up to now. As the reason, it is necessary to examine capability of using waste heat which is raised up in the tunnel of subway out of widely distributed low-temperature waste heat in large cities. Therefore we surveyed thermal environment of the tunnel of subway in $S\check{o}my\check{o}n$, downtown of Pusan, from November 1995 to December 1996 and developed a program to predict the thermal environment of subway on the basis of experimental data and the geometries of tunnels. This paper has proved availability of waste heat of subway when the measured results obtained in subway in the winter time and the simulated results of thermal environment prediction program are compared, as well as has reported results of estimating reliability of the simulation program. As the result, the charateristics of thermal environment in the tunnel of subway in $S\check{o}my\check{o}n$ station in the winter time are to be followed; 1) temperature in the tunnel is about $10^{\circ}C$ higher than outside air temperature, 2) temperature change in the tunnel is less than that in the platform so that we may obtain stable heat source, 3) and when the measured results obtained in subway in the winter time and the simulated results of thermal environment prodiction program is compared, both results show similar tendency. Therefore, we confirm estimating reliability of the simulation program.

  • PDF

A Study on the Improvement of Performance for Centralized Air Conditioning System by Using Air-Cooled Air Conditioner - The Case of Mokpo National Maritime University - (공랭식 에어컨을 이용한 중앙 집중 공조시스템의 성능 개선에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Kim, Hong-Ryel;Han, Seung-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, distributed the ship's Centralized Air Conditioning System the way an individual to replace the air conditioning system by using Air-cooled air conditioner. Research results, Individually separated air conditioning system complement the heat source control and thermal efficiency problems and improves the efficiency of the device was confirmed. In addition, under the same conditions refrigeration capacity and coefficient of performance of the device, an average of about 3 %, 23 ~ 26 %, higher, Chilled Water Plants Compressor power consumption is about 12 % lower. Also while heating under the same conditions, power consumption is about 33.5 % lower. Therefore Individually Separated Air Conditioning System greatly contributed to the improved performance of the device and living spaces for comfortable temperature and humidity control as well as heating source could be obtained.

Analysis of Decontamination from Concrete by Microwave Power

  • Zi, Goang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.603-608
    • /
    • 2004
  • The paper analyzes a scheme of decontamination of radionuclides from concrete structures, in which rapid microwave heating is used to spall off a thin contaminated surface layer. The analysis is split in two parts: (1) The hygrothermal part of the problem, which consists in calculating the evolution of the temperature and pore pressure fields, and (2) the fracturing part, which consists in predicting the stresses, deformations and fracturing. The rate of the distributed source of heat due to microwaves in concrete is calculated on the basis of the standing wave normally incident to the concrete wall with averaging over both the time period and the wavelength because of the very short time period of microwaves compared to the period of temperature waves and the heterogeneity of concrete. The reinforcing bars parallel to the surface arc treated as a smeared steel layer. The microplane model M4 is used as the constitutive model for nonlinear deformation and distributed fracturing of concrete. The aim of this study is to determine the required microwave power and predict whether and when the contaminated surface layer of concrete spalls off. The effects of wall thickness, reinforcing bars, microwave frequencies and power are studied numerically. As a byproduct of this analysis, the mechanism of spalling of rapidly heated concrete is clarified.

  • PDF

An Experimental and Numerical Analysis on Performance Comparison of a Trigeneration Desiccant System and Conventional Air-conditioning System (Trigeneration 제습공조시스템과 일반공조시스템의 성능 비교 실험 및 수치해석)

  • Kim, Hyoung-Tae;Chae, Jungmin;Cho, Young-Ah;Park, So-jin;Song, Geun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.32-37
    • /
    • 2018
  • Recently, the distributed power generation market using natural gas is expected to expand gradually according to the government's future energy conversion policy. Distributed power generation means small power generation source near the power demand site, which has the advantage of reducing the construction costs of the transmission and distribution infrastructure, operating cost and power loss. A typical example of distributed generation using natural gas is the trigeneration system. In this study, we conducted a basic study on the performance analysis of trigeneration desiccant system for dehumidifying / cooling / heating in the air conditioner room by using the cold and engine waste heat energy generated in the trigeneration system. It shows that the system efficiency increases and the energy consumption decreases as the temperature difference between the inlet and outlet of the trigeneration system increases compared with the general air conditioning system.

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF

Scroll Expander with Heating Structure and Their Systems for Distributed Power Source (가열구조를 갖는 스크롤 팽창기와 이를 이용한 분산발전 시스템)

  • Kim, Young Min;Shin, Dong Kil;Lee, Jang Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.225-231
    • /
    • 2004
  • Scroll compressor has been used extensively for refrigeration since the early 1980's for its improved efficiency, greater reliability, smoother operation, lower noise and vibration. And also, nowadays, the scroll mechanism is used for expander even though in niche market yet. But scroll expander has not been used for high-temperature and high-pressure gas, because the continuous expansion of the gas causes a wide range of temperature distribution over the whole scroll wrap that leads to differential thermal expansion of scroll elements, which results in system vibrations, noise and efficiency losses. For the scroll expander to produce power more efficiently, all of radial and radial clearances between scroll wrap must be the same. In order to reduce differential thermal expansion in addition to improvements in thermal efficiency and specific power, we propose a scroll expander with heating structure. Heat-pipe heating structure is considered as the most effective method to heat the scroll expander at a uniform temperature. This paper includes some results of preliminary study of the scroll expander with heating structure and proposals of their systems for power generation and refrigeration.

  • PDF