• Title/Summary/Keyword: DIGITAL TERRAIN ELEVATION DATA

Search Result 127, Processing Time 0.024 seconds

A Study on the Application of Interpolation and Terrain Classification for Accuracy Improvement of Digital Elevation Model (수지표고지형의 정확도 향상을 위한 지형의 분류와 보간법의 상용에 관한 연구)

  • 문두열
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.64-79
    • /
    • 1994
  • In this study, terrain classification, which was done by using the quantitative classification parameters and suitable interpolation method was applied to improve the accuracy of digital elevation models, and to increase its practical use of aerial photogrammetry. A terrain area was classified into three groups using the quantitative classification parameters to the ratio of horizontal, inclined area, magnitude of harmonic vectors, deviation of vector, the number of breakline and proposed the suitable interpolation. Also, the accuracy of digital elevation models was improved in case of large grid intervals by applying combined interpolation suitable for each terrain group. As a result of this study, I have an algorithm to perform the classification of the topography in the area of interest objectively and decided optimal data interpolation scheme for given topography.

  • PDF

A Technique for Measuring Terrain Uniqueness from Digital Terrain Elevation Data (수치 고도자료를 이용한 지형의 유일성 평가 알고리즘 연구)

  • Kim, Su-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.99-106
    • /
    • 2008
  • Digital Terrain Elevation Data is a set of numerical values that represent the heights of the terrain surface. Terrain has several properties. Among them, roughness is the most widely used one because it gives very useful information to land-based or land-reference platform. There are several ways to measure roughness of terrain. But each of them has own flaws. Moreover, it is not enough to represent the uniqueness of the terrain only by the roughness. We need another metric to measure the actual uniqueness. In this paper, we propose an improved method to measure essential characteristics, uniqueness, of terrain. It gives not only the roughness but also the unevenness. The combination of them makes up the uniqueness. And it can be applied even if there is no pre-planned path on the terrain.

The Determination of Earthwork Volume using LiDAR Data (LiDAR 데이터를 이용한 토공량 산정)

  • Kang Joon-Mook;Yoon Hee-Cheon;Min Kwan-Sik;We Gwang-Jae
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.533-540
    • /
    • 2006
  • In recent years, civil-engineering work is desired the terrain information to be more efficient in earthwork volume calculation. One method for collecting elevation data is LiDAR. Lidar data was used to produce rapidly an accurate digital elevation model of the terrain, compared with the conventional ground surveys, photogrammetty, and remote sensing. Raw Lidar data is combined with GPS positional data to georeference the data sets. Lidar data is edited and processed to generate surface models, elevation models, and contours. Here we can either create a Tin Volume Surface or a Gird Volume Surface. Triangulated Irregular Network(TIN) has complex data structure, but it can describe well terrain surface features. As we have seen, we search the efficiency for earthwork volume calculation using Lidar data. One conclusion we can draw from this study is that Lidar data is more accurate result than digital map in the calculation of earthwork volume.

  • PDF

Development of Automatic Terrain Following Simulator Using Digital Terrain Elevation Data (디지털 지형 고도 데이터를 이용한 자동 지형 추종 시뮬레이터 개발)

  • Jisu Lee;MunGyou Yoo;Hyunju Lee;Ki Hoon Song;Dong-Ik Cheon;Sangchul Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.88-98
    • /
    • 2024
  • In this paper, an Automatic Terrain Following (ATF) Simulator using Digital Terrain Elevation Data (DTED) was proposed. This ATF Simulator consists of a Flight Simulator, a Radar Simulator, and a Terrain Following Computer (TFC) Simulator. DTED and radar scan data generated with DTED were used as the terrain information necessary for terrain following. The ATF Simulator provides three modes of operation: a passive mode that uses DTED, an active mode that uses radar scan data, and a hybrid mode that uses both. We developed an ATF Simulator that could reduce the cost and time required to develop a terrain following system using the LabVIEW development environment and the MATLAB App Designer development environment. It was verified by confirming that the ATF Simulator met all functional requirements.

Real-Time Terrain Rendering Framework for GIS Applications

  • Kang, Dong-Soo;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Real-time 3D visualization of terrain data is one of the important issues in GIS(Geographic Information System) field. We present a real-time terrain rendering engine that can use several types of GIS data source such as DEM(Digital Elevation Map), DTED(Digital Terrain Elevation Data) and LIDAR(Light Detection And Ranging). Our rendering engine is a quadtree-based terrain rendering framework with several acceleration modules. This can generate an ocular and binocular image. Also it can be applied to the flight simulation, walk-through simulation and a variety of GIS applications.

  • PDF

A Study on the Production of Orthophoto Map from Digital Imagery Data of SPOT Satellite (SPOT 위성의 수치영상자료를 이용한 정사투영사진지도의 제작에 관한 연구)

  • Yeu, Bock-Mo;Sohn, Duk-Jae;Park, Joung-Nam;Jeong, Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.83-96
    • /
    • 1993
  • The orthophto map is seen as the form of picture with the uniform reduced scale as the current terrain map. Thus it provides a reasonable feeling of scene and is easy to be interpreted. Furthermore, digital orthophoto is currently used as the basic terrain information data of the Geo-Spatial Information System(GSIS). Therefore, the orhtophoto map has high potential use as a future terrain map. This paper studies the method of producing orthophoto map by using the digital satellite imagery data taken from SPOT satellite of France. The production of orthophoto map requires the process of generating orthophoto imagery with digital elevation model, which process is called digital differential rectification. As the final accuracy of orthophoto map depends on that of digital elevation model, the precise and efficient production method of digital elevation model should be preceded. This study investigated the method of producing digital elevation model directly from SPOT satellite imagery and generated ortho-image by resampling the original SPOT imagery through digital differential rectification. Finally, Simple orthophoto map was made by overlaying the ortho-image and the contour map from digital elevation model.

  • PDF

Analysis of A Watershed Terrain Factors using Digital Elevation Model (수치표고모형에 의한 유역에서의 지형인자 분석)

  • 양인태;천기선;박재훈
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • A watershed terrain factor is known to the very important in studies of a stream and a watershed. We have obtained the terrain factor in map directly or we have generated it in a digitalized map. In this study, DTED (Digital Terrain Elevation Data) offering in DMA(Defense Mapping Agency) was used to create a stream and a watershed and to extract the terrain factor. As comparison of the terrain factors gererated in digitalized map with the terrain factors extracted in DTED, DTED could be used to extract a terrain factor for a watershed management.

  • PDF

Comparative Analysis of Terrain Slope Using Digital Map, LiDAR Data (수치지형도와 LiDAR 데이터를 이용한 지형경사도 비교분석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Min, Kwan-Sik;Rhee, Won-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.3-9
    • /
    • 2007
  • Recently, the efforts of systematic understanding and utilization of geographic phenomenon for human life as a important factor among activity of mankind are increasing. It is necessary to express topography connected with space. Especially, the technology of geographic analysis using DEM can supply the information rapidly and accurately about elevation and terrain slope of the subject area under the necessity of high 3D quality geographic information. In this study, creating more precise DEM derived from LiDAR data, quantitative analysis on the subject area about elevation and terrain slope is done under comparison with Digital Topographic map Scale 1:1000. LiDAR data is more detailed than Digital Topographic map to express the elevation of the subject area ($39.89{\sim}77.48m$), and terrain slope by analysis using DEM derived from LiDAR data come out minutely about 90%. It can be concluded that the LiDAR data is very applicable and accurate for 3D topographic terrain slope analysis.

  • PDF

Misclassified Area Detection Algorithm for Aerial LiDAR Digital Terrain Data (항공 라이다 수치지면자료의 오분류 영역 탐지 알고리즘)

  • Kim, Min-Chul;Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In;Park, Jun-Ku
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 2011
  • Recently, aerial laser scanning technology has received full attention in constructing DEM(Digital Elevation Model). It is well known that the quality of DEM is mostly influenced by the accuracy of DTD(Digital Terrain Data) extracted from LiDAR(Light Detection And Ranging) raw data. However, there are always misclassified data in the DTD generated by automatic filtering process due to the limitation of automatic filtering algorithm and intrinsic property of LiDAR raw data. In order to eliminate the misclassified data, a manual filtering process is performed right after automatic filtering process. In this study, an algorithm that detects automatically possible misclassified data included in the DTD from automatic filtering process is proposed, which will reduce the load of manual filtering process. The algorithm runs on 2D grid data structure and makes use of several parameters such as 'Slope Angle', 'Slope DeltaH' and 'NNMaxDH(Nearest Neighbor Max Delta Height)'. The experimental results show that the proposed algorithm quite well detected the misclassified data regardless of the terrain type and LiDAR point density.

Analysis of Topographic Environment for Urban Forest Area in Taejon City Using Landsat - 5 TM and Digital Terrain Elevation Data (Landsat-5 TM과 수치지형데이타를 이용한 도시내 산림의 지형환경 분석 - 대전시를 중심으로 -)

  • 장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.10 no.1
    • /
    • pp.58-65
    • /
    • 1996
  • The environment in urban are becoming worse and forest is being recognized the major part of city by the increase of population and facilities. This study was carried out to analyze topographic environment as the basis for reasonable management and utility of forest situated in Taejon city and its vicinities using Sandst-5 TM and digital terrain elevation data(DTED). Forest area was extracted by Landsat-5 TM data. Distribution of elevation, slope and aspect was derived from digital terrain elevation data. The research area to analyze ropographic environment for urban forest were Bomumsan, Bongsan, Kabhasan, Sikchangsan, and Kyechoksan. Forest, the largest area in Taejon covers 55.1% of totaf area. This is more 5 times than urban area. 70.8% of forest area in Taejon city is located in elevation of lower than 200m and 4.8% of that is located in elevation of upper than 400m. Distribution of elevation is 45.7% of total area for 100m to 200m in Kyechoksan and is 92.4% of total area for lower than 300m in Bomumsan. Elevation of upper than 300m is 20.4% of total area in Kabhasan and is 46.6% of total area in Sikchangsan. The slope of more 20 digree is over 50% of total area in every area except for Bonsan and 35.2% of total area in Sikchangsan and Kahasan than in Bomumsan and Kyechoksan.

  • PDF