• 제목/요약/키워드: DI engine

검색결과 211건 처리시간 0.022초

대체에너지 DME를 사용하는 직접분사엔진의 배기특성에 미치는 Cooled EGR의 영향 (Effects of Cooled EGR on Exhaust Emission Characteristics of DI DME Engine)

  • 표영덕;남상훈;김강출;김영길;이영재
    • 한국수소및신에너지학회논문집
    • /
    • 제14권2호
    • /
    • pp.138-145
    • /
    • 2003
  • There are high expectations for DME(Dimethyl Ether) as a new alternative fuel for diesel engine. Compared with the conventional diesel engine, nearly zero soot emission and high thermal efficiency have been reported from DME fuelled CI engines. However, higher NOx emission is one of the disadvantages from DME Engines. In the present study, cooled EGR(Exhaust Gas Recirculation) was applied to DME engine modified from conventional Dl diesel engine, and effects of EGR were examined under various EGR temperature. Finally, it was concluded that the cooled EGR is an effective solution to reduce NOx emission from DME engine.

연료소비율 개선을 위한 고압/저압 배기재순환 시스템 구축 및 저온연소 엔진의 운전전략 수립 (Establishing HP/LP-EGR System and Founding Operating Strategy of Low Temperature Combustion Engine to Improve Fuel Consumption)

  • 신승협;한영덕;심의준;김득상
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.81-89
    • /
    • 2014
  • This study researched on the effect of HP/LP-EGR system to improve fuel consumption of Low Temperature Combustion Engine. Firstly, low temperature combustion engine with HP/LP-EGR system was established using 6.0L wastegate turbocharger HDDI engine. And suppliable EGR rate of the engine was proven to be enough to realize stable low temperature combustion. Then, optimum operating strategy was founded to develop fuel consumption of the engine. Control parameters were HP/LP-EGR valve and IPCV(Intake Pressure Control Valve) duty. Experiments method was that characteristics of the engine were measured and analyzed according to HP/LP-EGR strategies while EGR rate was fixed. Operating range for the strategy were divided into three parts, low load for low temperature combustion, high load for conventional diesel combustion, and transient condition. Finally, with the above strategy of this study, BSFC of the engine was improved about 2% compared to the base engine, and emission level, NOx and PM, met Tier4Final emission regulation.

DI 디젤기관에서 바이오디젤유와 함산소연료(EGBE) 동시적용 및 EGR에 의한 배기배출특성 (The Characteristics of Emission on Simultaneous Application with Biodiesel, Oxygenated Fuel(EGBE) and EGR in a DI Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.143-148
    • /
    • 2010
  • In this study, the potential possibility of biodiesel fuel(BDF) and oxygenated fuel(ethylene glycolvmono-n-butyl ether; EGBE) was investigated as an effective method of decreasing the smoke emission. The smoke emission of blending fuel (BDF and EGBE 0~20 vol-%) was reduced in comparison with diesel fuel and it was reduced approximately 64% at 2000 rpm, full load in the 20% of blending rate. But torque and brake specific energy consumption( BSEC) didn't have no large differences. Also, the effects of exhaust gas recirculation(EGR) for the reduction of NOx emission has been investigated. Consequently, It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(90 vol-%) and EGBE(10 vol-%) blended fuel and cooled EGR method(5~10%).

연료성상 변화와 배기가스재순환 방법 적용에 의한 디젤기관의 성능 및 배기배출물 특성 연구 (A Study on Characteristics for Performance and Exhaust Emissions on Changes of Fuel Properties and Application of EGR Method in Diesel Engines)

  • 오영택;최승훈
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.358-363
    • /
    • 2006
  • In this study, the effects of oxygenated fuel such as ethylene glycol mono-normal butyl ether(EGBE) was investigated both DI and IDI diesel engine. Because EGBE includes oxygen content approximately 27.1 %, it is a kind of oxygenated fuel that the smoke emission of EGBE blending fuel is reduced remarkably compared with commercial diesel fuel. The focus of this study was to investigate the effects of the addition of oxygenated fuel to diesel fuel on the engine-out emissions and the performance. Smoke emissions of all EGBE blends were reduced substantially in comparison with conventional diesel fuel. This study showed that remarkable reduction of smoke with oxygenate blending fuels in diesel engines including DI and IDI combustion method. Besides, this study showed that simultaneous reduction of smoke and NOx emissions could be achieved by oxygenated fuel and EGR method that was applied to decrease NOx emissions increasing with smoke emissions reduction.

DME 체적탄성계수의 측정 및 계산 (Measurement and Calculation of Bulk Modulus for DME)

  • 조승환;이범호;이대엽
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.841-848
    • /
    • 2008
  • DME(Di-methyl Ether) has been expected to be one of the promising alternative fuels for compression ignition engines due to its low emission characteristics for particulate matter. However, its physical properties such as density, bulk modulus and viscosity are not comparable to those of conventional diesel fuel. Especially, problems caused by low lubricity and high compressibility need to be understood more thoroughly, when a DME fuel is used for compression ignition engine, especially with mechanical fuel supply system. In this study, measurement and calculation of DME's bulk modulus were carried out over the range of temperatures from $-3^{\circ}C$ to $53^{\circ}C$, and pressures from 50 bar to 250 bar using an experimental apparatus built in this work. The results show that DME is prone to be compressed more easily compared to diesel fuel. A comparison of bulk modulus with butane and propane were also made in this work.

직접분사식 소형 디젤엔진의 배기배출물에 대한 인자분석적 고찰 (Factor Analysis on Exhaust Gas Emissions of Small DI Diesel Engine)

  • 장세호;김영식
    • 수산해양교육연구
    • /
    • 제29권2호
    • /
    • pp.586-592
    • /
    • 2017
  • This study analyzed the effect of four control factors, RPM, load, EGR rate and cooling water temperature on the exhaust emissions of the small DI diesel engine. The amount of NOx and smoke emissions were measured through experiments for three levels of four control factors according to orthogonal array table, and the effect of four factors on NOx and smoke emissions was analyzed quantitatively. The main results obtained in this study are summarized as follows: 1. RPM, load and EGR rate have a great influence on NOx and smoke emissions, and the effect of cooling water temperature is negligible. 2. As RPM and load increases NOx emission increases and decreases sharply as the EGR rate increases. 3. Smoke emission decreases or increases randomly according to RPM and load, but increases sharply in proportion to the EGR rate. 4. EGR rate has the greatest effect on NOx and smoke emissions by more than 60% of contribution to variance, especially in the case of NOx emission, EGR rate represents a significant result even under the confidence level of 99% on ANOVA.

HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 단위반응 수치 해석 (Potential of Thermal Stratification and Partial Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines)

  • 임옥택
    • 한국가스학회지
    • /
    • 제13권6호
    • /
    • pp.21-28
    • /
    • 2009
  • 본 연구의 목적은 온도 성층화와 농도 성층화의 효과가 HCCI 연소에서 압력상승률 저감과 배기가스에 어떤 영향을 미치는지 알아보는 것이다. 2단계 열발생이 생기는 디메틸에테르(Di-Methyl Ether, DME) 연료를 사용하였다. 수치계산은 멀티 존 모델과 상세 화학 반응 스킴을 이용하였다. 수치계산 결과, 온도 성층화와 농도 성층화는 연소기간을 길게 하여 압력상승률을 저감시키는 것을 확인하였다. 그러나 농도 성층화의 폭이 너무 커지면 오히려 일산화탄소와 질소산화물이 증가하였으며, 연소 효율은 감소하였다.

  • PDF

단기통 디젤 기관의 배기관 가스유동에 관한 연구 (A Study on the Gas Flow in Exhaust Manifold of a Single Cylinder Diesel Engine)

  • 이정엽;고대권;조규학;장세호;안수길
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.14-19
    • /
    • 2003
  • A diesel engine has been widely used for ship and industry power because it has many merits of high thermal efficiency, reliability and durability. However its exhaust gas is harmful to human and air environment. Reducing the hurtful exhaust gas emissions, the study of the gas flow in the inlet and exhaust manifold is in progress in the world. In this paper we modeled the gas flow as one dimensional isentropic flow to predict the gas flow in the exhaust manifold. The method of characteristics was used for the model calculation, and the calculated results were compared with the experimental ones.

  • PDF

분할 분사시기 변화에 따른 직분식 디젤엔진의 연소 특성 (Combustion characteristics of DI diesel engine according to various timings of split injection)

  • 연인모;노현구;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.104-109
    • /
    • 2005
  • This paper describes the effect of the split injection on combustion and emission characteristics in a common rail diesel engine at various operating conditions. The combustion pressures and exhaust emissions such as $NO_x$ and soot were measured at various split injection timings. The experimental apparatus of this study is composed of 4 cylinder engine installed with piezoelectric pressure sensor, EC dynamometer, and exhaust gas analyzer for the measurement of $NO_x$, CO, HC and soot emissions. Results show that the split injection has a great effect on reducing the rapid premixed combustion and $NO_x$ emissions.

  • PDF

압축착화 엔진에서 가솔린 예혼합이 연소 및 배기 특성에 미치는 영향 (Effect of Gasoline-premixing on Combustion and Exhaust Emissions Characteristics in Compression Ignition Engines)

  • 차준표;권석주;허정윤;이창식;박성욱
    • 한국연소학회지
    • /
    • 제15권4호
    • /
    • pp.53-57
    • /
    • 2010
  • The purpose of the present work is to investigate the effect of gasoline-premixing on a combustion and emissions characteristics in a compression ignition engine. For studying combustion characteristics, a combustion pressure and rate of heat release (ROHR) were measured using a single-cylinder DI compression ignition engine with a common-rail injection system and premixed fuel injection system. In addition, exhaust emissions characteristics were studied using emission analyzers and smoke meter. The experimental results showed that the case of gasoline-premixing had longer ignition delay and lower combustion pressure compared to the cases of diesel direct injection. Furthermore, premixed gasoline-air mixture reduced NOx emissions due to low peak of ROHR.