• Title/Summary/Keyword: DI diesel engine

Search Result 153, Processing Time 0.028 seconds

Common-Rail DI Diesel Engine에서 Split Injection이 PM및 NOx 배출에 미치는 영향에 관한 기초 연구 (A Study of the Effects of Split Injection on PM and NOx emission in a Common-Rail DI Diesel Engine)

  • 최진호;정재욱;장동훈;이재욱;전광민
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.225-230
    • /
    • 2003
  • The major purpose of this study is to find the optimized split injection quantities and dwell angles for PM reduction without increasing NOx. The tests were performed on a Common-Rail DI Diesel Engine to obtain optimum injection timing and duration. In this study, total injection quantities were divided into the ratio of 25-75%, 50-50% and 75-25%. NOx and PM were measured on the condition of the same bsfc by increasing dwell angles. It was found that the split injection reduced NOx with dwell angle increase. For 50_50, 75_25% split injection cases, PM was reduced with 10 to 12(CAD) dwell angles. For 25_75% split injection 33% PM reduction was achieved with 8 to 12(CAD) dwell angles.

  • PDF

The Combustion and Exhasut Emission Characteristics on the Low-temperature Combustion of Biodiesel Fuel in a DI Diesel Engine

  • Yoon, Seung Hyun
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.197-202
    • /
    • 2017
  • The objective of this study is to investigate the effects of low-temperature combustion (LTC) on the correlations of combustion characteristics and reduction of exhaust emissions in a small DI diesel engine with biodiesel fuel. In order to analyze the combustion, exhaust emission characteristics and distribution of nano size particles for biodiesel were investigated. In addition, to evaluate the effect of LTC on the combustion and emission characteristics, 30 and 50% of cooled-EGR rates were investigated. From these results, it revealed that the influence of LTC on the combustion characteristics showed that the ignition delay significantly increased and reduces peak heat release rate of premixed combustion by lowering reaction rate. With 50% EGR and advanced injection timing, soot and $NO_x$ emissions were simultaneously reduced.

CHARACTERISTICS OF PERFORMANCE AND EXHAUST EMISSION OF DIESEL ENGINES BY CHANGES IN FUEL PROPERTIES AND APPLICATION OF EGR

  • Choi, S.H.;Oh, Y.T.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.179-184
    • /
    • 2007
  • In this study, the potential use of oxygenated fuels such as ethylene glycol mono-normal butyl ether (EGBE) was investigated in an attempt to reduce the emission of exhaust smoke from diesel engines. Effects of the combustion method on exhaust emission of DI and IDI diesel engines were also examined. Since EGBE is composed of approximately 27.1% oxygen, this is one of several potential oxygenated fuels that could reduce the smoke content of exhaust gas. EGBE blended fuels have been proven to reduce smoke emission remarkably compared to the conventional commercial fuels. The test was conducted with single and four cylinder, four stroke, DI and IDI diesel engines. The study showed that a simultaneous reduction of smoke and NOx emission could be achieved by the combination of oxygenated blend fuels and the cooled EGR method in both DI and IDI diesel engines. It was also found that a reduction rate of exhaust emission in a DI engine was larger than an IDI diesel engine.

직접분사식 커먼레일 단기통 디젤엔진에서 EGR율에 따른 연소 및 배기특성 (Effect of EGR Rate on Combustion and Emission Characteristics in a Single-cylinder Direct Injection Diesel Engine with Common-rail)

  • 허정윤;차준표;윤승현;이창식
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.20-25
    • /
    • 2011
  • The purpose of this work is an experimental investigation of combustion and emission characteristics in DI diesel engine applied high EGR rate as a method of low-temperature combustion. In order to analyze the effect of EGR rate variation, a single-cylinder DI diesel engine was operated under various EGR rate conditions. In addition, injection timing was variously controlled to investigate the effect of injection timing in DI diesel engine using the cooled-EGR system. The NOx emissions were decreased in accordance with the increase of EGR rate. On the contrary, soot emissions were generally increased under applied EGR conditions. However, soot emissions were decreased in a few injection timings under high EGR rate conditions. The EGR results show that the ignition delay were increased by decreased oxygen concentrations in combustion chamber under the high EGR rate.

IDI 디젤기관의 개선된 단일영역 열발생량 계산 (Advanced One-zone Heat Release Analysis for IDI Diesel Engine)

  • 김규보;전충환;장영준;이석영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1101-1110
    • /
    • 2004
  • An one-zone heat release analysis was applied to a 4 cylinder indirect injection diesel engine. The objective of the study is to calculate heat release accurately considering the effect of specific heat ratio. heat transfer and crevice model and to find out combustion characteristics of an indirect diesel engine considering the effect of the pressures in main and swirl chambers. Especially specific heat ratio indicating combustion characteristics is adapted. instead of that indicating matter properties, which has been used in former studies Moreover by adaption of blowby model, cylinder gas mass became accurately calculated. Therefore, with ideal gas equation, calculating cylinder gas temperature, it was found to affect heat transfer loss and heat release. Determining heat transfer constants $C_1$. $C_2$ as 0.6 respectively. the integrated gross heat release values were predicted well for the measured value at various engine speed, full load operating conditions. The curve of heat release rate was similar to SI engine rather than DI engine. That is originated from that swirl chamber reduce an instant combustion which occurs in DI engine due to ignition delay on early stage of combustion.

직접 분사식 디젤엔진에서 EGR이 배기배출물에 미치는 영향에 관한 연구 (The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine)

  • 장세호
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.18-23
    • /
    • 2004
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments-were performed at various engine loads while the EGR rates were set from 0% to 20%. The emissions trade-off and combustion of diesel engine are investigated. Hot and cooled EGR are achieved without cooling and with cooling respectively. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions. Also, the reduction rates of NOx emissions for hot and cooled EGR are similar at load 20%.

  • PDF

DI 디젤기관에서 함산소연료(EGBE)와 EGR의 유용성에 관한 실험적 연구 (An Experimental Study on Usability of Oxygenated Fuel(EGBE) and EGR in a DI Diesel Engine)

  • 최승훈;황윤택;김우상;오영택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1697-1702
    • /
    • 2003
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for a direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated blended fuel which has seven kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission have been investigated. Ethylene glycol mono-n-butyl ether(EGBE) contains oxygen component 27% in itself, and it is a kind of effective oxygenated fuel of mono-ether group that the smoke emission of EGBE blended fuel is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in a diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and cooled EGR method.

  • PDF

이색법을 이용한 직접 분사식 디젤엔진 실린더내의 화염 분도 및 Soot 분포 측정에 관한 연구 (A Study on In-Cylinder Measurement of Flame Temperature and Soot Distribution in D.I. Diesel Engine Using Tow-Color Method)

  • 박정규;정수훈;원영호
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.42-53
    • /
    • 1999
  • Two dimensional flame temperature and KL value distribution from the luminous flame containing soot in a DI diesel engine were measured by the tow-color method using tow different wavelengths of the flame image. The combustion chamber of a DI diesel engine was visualized by elongating the piston and cylinder and the flame in the combustion chamber was photographed on a nega-color film using a high speed camera. In this study, color CCD camera was used to digitize the three color density of the film exposed to the flame and standard lamp . The accuracy of the measuring method depends on the calibration line of film made from a high temperature standard tungsten lamp. The formation and oxidization of soot in the diesel engine were studied by observing measured time history of KL factor and flame temperature . Also , effects of various shapes of combustion chamber and fuel injection on flame temperature. Also, effects of various shapes of combustion chamber and fuel injection on flame temperature and KL value distribution were examined.

  • PDF

직분식 디젤엔진에서 EGR이 연소특성 및 배출가스에 미치는 영향에 대한 시뮬레이션 연구 (Engine Cycle Simulation for the Effects of EGR on Combustion and Emissions in a DI Diesel Engine)

  • 함윤영;전광민
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.51-59
    • /
    • 2002
  • In this study, cycle simulation was performed to investigate the effect of EGR on combustion characteristics and emissions including NO and soot using a two-zone model in a DI diesel engine. The NO formation was well predicted for different EGR rate and temperature using a two-zone model. The oxygen in the inlet charge was replaced by CO$_2$ and H$_2$O with EGR. The reduction in the inlet charge oxygen resulted in very large reduction in NO level at the same inlet charge temperature. The effect of EGR was to reduce the burned gas temperature. When EGR was increased from 0% to 15%, the peak flame temperature was decreased by 50$\^{C}$ and it caused about 57% NO reduction. EGR caused increase of the overall inlet charge temperature which offset some of benefit of lower flame temperature resulting from O$_2$ displacement. Cooling the EGR was confirmed to provide additional benefits by lowering NO emission. It also reduced soot emission.

디젤기관에 분사되는 가솔린연료의 압축착화성 향상 (Improvement of Compression Ignition for Gasoline Fuel Injected in the Diesel Engine)

  • 최윤종;이준성
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.26-31
    • /
    • 2011
  • 본 논문은 기존의 스파크 점화 방식이 아닌 bulk combustion 방식을 도입하여 별도의 점화장치 없이 상용 단기통 디젤기관에 유입되는 흡입공기를 가열 및 제어하여 흡기관에 분사되는 가솔린연료의 압축착화성을 향상시킴으로서 기관작동을 가능하게 하였다. 제동열효율의 최대값은 공기-연료비가 35부근에서 나타나며, 35이상의 영역에서는 급격히 감소하고 흡입공기 가열온도가 올라갈수록 제동열효율은 증가한다. 따라서 공기-연료비를 감소시키면서 흡입공기의 가열온도를 상승시키는 방식이 열효율 측면에서 효과적이라는 것을 알 수 있다.