• Title/Summary/Keyword: DHS(District Heating System)

Search Result 8, Processing Time 0.02 seconds

Development of Thermal Performance Analysis Program of Solar Heating System for District Heating System (지역난방 태양열시스템의 열성능 해석 프로그램 개발)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.64-69
    • /
    • 2008
  • In this study the thermal performance and economic analysis program of solar heating system for district heating was developed. This program, named SOLAN-DHS and based on TRNSYS, consisted of four modules like as user's interface for system input/output, library, and utilities and a calculating engine. SOLAN-DHS simplifies user's input data through the database of most system engineering data including weather data of 17 areas in Korea. Five different types of solar systems which can be applicable to district heating system were presented in this program. Due to the user-friendly layout, all design parameters can be changed quickly and easily for the influence on system efficiency. The reliability of SOLAN-DHS was finally verified by the experiments.

The Development of Analysis Program of Solar Heating System for District Heating System (지역난방 태양열시스템 해석 프로그램 개발)

  • Back, Nam-Choon;Shin, U-Cheul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.190-195
    • /
    • 2008
  • This study aims to develop the thermal performance and economic analysis program of solar heating system applied to district heating systems. The program, named SOLAN-DHS, is consisted of four modules like as user's interface for system input/output, library, and utilities and a calculating engine. SOLAN-DHS simplifies user's input data through the database and can design 5 different types of solar systems. Due to the user-friendly layout, all design parameters can be changed quickly and easily for the influence on system efficiency. The reliability of SOLAN-DHS was finally verified by the experiments.

  • PDF

The Analysis Study on Supplying Heat by Various Control Methods in District Heating System (지역난방 시스템에서 제어방법에 따른 공급열량의 해석적 연구)

  • Kim, Seong-Su;Jung, Sang-Hum;Moon, Youn-Jin;Cho, Sung-Hwan;Ryu, Jae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1008-1013
    • /
    • 2009
  • The theoretical simulation to predict the variation of supplying heat according to control methods of DHS(District Heating System) have been done by TRNSYS(A Transient System Simulation Program) 16. The physical system for DHS consists of primary and secondary supplying heating loop which is divided by based on heat exchanger for heating demand of building. The simulation results showed that control of secondary supplying heat had influenced more than primary supplying heat control to total energy consumption of DHS. And the outside temperature reset control of primary supplying heating loop could be reduced until about 4% overheating of each zone.

  • PDF

Optimization of Integrated District Heating System (IDHS) Based on the Forecasting Model for System Marginal Prices (SMP) (계통한계가격 예측모델에 근거한 통합 지역난방 시스템의 최적화)

  • Lee, Ki-Jun;Kim, Lae-Hyun;Yeo, Yeong-Koo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.479-491
    • /
    • 2012
  • In this paper we performed evaluation of the economics of a district heating system (DHS) consisting of energy suppliers and consumers, heat generation and storage facilities and power transmission lines in the capital region, as well as identification of optimal operating conditions. The optimization problem is formulated as a mixed integer linear programming (MILP) problem where the objective is to minimize the overall operating cost of DHS while satisfying heat demand during 1 week and operating limits on DHS facilities. This paper also propose a new forecasting model of the system marginal price (SMP) using past data on power supply and demand as well as past cost data. In the optimization, both the forecasted SMP and actual SMP are used and the results are analyzed. The salient feature of the proposed approach is that it exhibits excellent predicting performance to give improved energy efficiency in the integrated DHS.

The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS (지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구)

  • Hong, Seong-Ki;Cho, Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter (인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

Actual Energy Consumption Analysis on Temperature Control Strategies (Set-point Control, Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control) of Secondary Side Hot Water of District Heating System (지역난방 2차측 공급수 온도 제어방안(설정온도 제어, 외기온 보상제어, 외기온 예측제어)에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki;Lee, Sang-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.137-145
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side of District Heating System (DHS) with different hot water supply temperature control methods are compared. Three methods are Set-point Control, Outdoor Temperature Reset Control and Outdoor Temperature Prediction Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side of the system, the results show that Outdoor Temperature Prediction Control method saves more energy. In general, Outdoor Temperature Prediction Control method lowers the supply temperature of hot water, and it reduces standby losses and increases overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, Outdoor Temperature Prediction Control method saves about 7.1% in comparison to Outdoor Temperature Reset Control method and about 15.7% in comparison to Set-point Control method. Also, it is found that at when partial load condition, such as daytime, the fluctuation of hot water supply temperature with Set-point Control is more severe than Outdoor Temperature Prediction Control. Therefore, it proves that Outdoor Temperature Prediction Control is more stable even at the partial load conditions.

A Study on Characteristics of Drag Reduction Additive under High Temperature Range (고온영역에서 계면활성제의 마찰저감 성능 특성에 관한 연구)

  • Cho, Sung-Hwan;Ryu, Jae-Sung;Jung, Sang-Hoon
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.116-120
    • /
    • 2010
  • Overall total length of hydraulic pipe to transport the hot water in the domestic district heating network is above 3,000 Km approximately. This long pipe network requires a lots of the transport pumping power by surface friction of fluid. In this study, the drag reduction(DR) of Amin Oxide $C_{18}$ as non-ionic surfactant according to the fluid velocity, temperature and surfactant concentration under the condition of above $80^{\circ}C$ fluid temperature were investigated experimentally. Results showed that new amin oxide $C_{18}$ surfactant had DR of maximum 30% in fluid temperature of $80^{\circ}C$ and had 15% DR in fluid temperature over $100^{\circ}$ under short time test condition. And amine oxide had 155 hours duration time to keep the DR characteristic in the fluid temperature of $80^{\circ}$ and 1000 ppm concentration. But duration time of DR was decreased when fluid temperature increased.