• 제목/요약/키워드: DGs Interconnection

검색결과 10건 처리시간 0.025초

부하불평형 및 부하모형을 고려한 복합배전계통의 분산형전원의 연계 방안 (Interconnection of Dispersed Generation Systems considering Load Unbalance and Load Model in Composite Distribution Systems)

  • 이유정;김규호;이상근;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권5호
    • /
    • pp.266-274
    • /
    • 2004
  • This paper presents a scheme for the interconnection of dispersed generator systems(DGs) based on load .unbalance and load model in composite distribution systems. Groups of each individual load model consist of residential, industrial, commercial, official and agricultural load. The unbalance is involved with many single-phase line segment. . Voltage profile improvement and system loss minimization by installation of DGs depend greatly on how they are placed and operated in the distribution systems. So, DGs can reduce distribution real power losses and replace large-scale generators if they are placed appropriately in the distribution systems. The main idea of solving fuzzy goal programming is to transform the original objective function and constraints into the equivalent multi-objectives functions with fuzzy sets to evaluate their imprecise nature for the criterion of power loss minimization, the number or total capacity of DGs and the bus voltage deviation, and then solve the problem using genetic algorithm. The method proposed is applied to IEEE 13 bus and 34 bus test systems to demonstrate its effectiveness.

DGS를 적용한 4중대역 안테나의 설계 및 제작 (Design and Fabrication of Quadruple Band Antenna with DGS)

  • 김민재;최태일;최영규;윤중한
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.31-38
    • /
    • 2020
  • 본 논문에서는 GPS/WiMAX/WLAN에 적용가능한 사중대역 안테나를 제안하였다. 4개의 마이크로스트립 선로를 가지며 접지면에 DGS 구조를 삽입하여 사중대역의 특성을 얻었다. 기판의 크기는 20 mm (W1)⨯27 mm (L1)이며 1.0 mm(h)의 기판의 두께와 비유전율 4.4인 FR-4 기판위에 안테나를 설계 하였다. 안테나의 크기는 20 mm(W1)⨯27 mm(L1)이며 DGS 구조의 크기는 16.3 mm (W2)⨯23.6 mm(L8+L6+L10)이다. 제작된 안테나의 측정결과로부터 -10dB 기준으로 GPS 대역에서 60MHz (1.525~1.585 GHz)의 대역폭을 얻었고 WiMAX 대역에서는 825MHz (3.31~4.135 GHz), WLAN 대역에서는 480MHz (2.395~2.875 GHz), 그리고 385 MHz (5.10~5.485 GHz)의 대역폭을 얻었다.

분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘 (An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations)

  • 신동열;김동명;차한주
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.

A New Islanding Detection Method using Phase-Locked Loop for Inverter-Interfaced Distributed Generators

  • Chung, Il-Yop;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.165-171
    • /
    • 2007
  • This paper proposes a new islanding detection method for inverter-interfaced distributed generators (DG). To detect islanding conditions, this paper calculates the phase angle variation of the system voltage by using the phase-locked loop (PLL) in the inverter controllers. Because almost all inverter systems are equipped with the PLL, the implementation of this method is fairly simple and economical for inverter-interfaced DGs. The detection time can also be shortened by reducing communication delay between the relays and the DGs. The proposed method is based on the fact that islanding conditions result in the frequency and voltage variation of the islanded area. The variation depends on the amount of power mismatch. To improve the accuracy of the detection algorithm, this paper injects small low-frequency reactive power mismatch to the output power of DG.

마이크로그리드의 운전조건을 고려한 과전류계전기 (The Over-current relay considering operating conditions of the micro-grid)

  • 강용철;강해권;차선희;장성일;이병은;김용균;박군철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.484-485
    • /
    • 2008
  • A micro-grid (MG) is a new concept to aggregate distributed generations (DGs) and loads in a small area. The difference between MG and DG is that MG can supply power to loads even in islanding conditions. The magnitude of the fault current depending on interconnection between the MG and utility and the number of DGs in the MG. Therefore, the setting value of the OCR must be changed depending on operating conditions of the MG. This paper proposes the over-current relay considering operating conditions of the MG. In the proposed algorithm, the supervisory control and data acquisition decides the operating conditions of the MG and sends the proper setting values to each OCR. The performance of the algorithm was investigated in the case of the various operating conditions.

  • PDF

Power Control and Ground Fault Simulations for a Distribution System with a Fuel Cell Power Plant

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • 조명전기설비학회논문지
    • /
    • 제24권7호
    • /
    • pp.9-19
    • /
    • 2010
  • Fuel cell (FC) distributed generation (DG) is gradually becoming more attractive to mainstream electricity users as capacity improves and costs decrease. New technologies including inverters are becoming available to provide a uniform standard interconnection of DGs with an electric power system. Some of the operating conflicts and the effect of DG on power quality are addressed and investigated through simulations on a real distribution network with an FC power plant. The results of these simulations have proved load tracking capability following the real and reactive power change of the load and have shown the flow of overcurrent from an FC power plant during the ground fault of a distribution line.

DGS를 갖는 Wi-Fi 6E 대역을 위한 삼중대역 WLAN 안테나 설계 및 제작 (Design and fAbrication of Triple Band WLAN Antenna Applicable to Wi-Fi 6E Band with DGS)

  • 박상욱;변기영;윤중한
    • 한국전자통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.345-354
    • /
    • 2024
  • 본 논문에서는 WLAN 시스템에 활용 할수 있도록 DGS를 적용하여 삼중대역 안테나를 제안하였다. 제안된 안테나는 두 개의 스트립 선로와 접지면에 세 개의 영역을 삽입하여 요구하는 주파수 대역과 반사손실 특성을 얻었다. 제안된 안테나는 22.0 mm(W) × 54.9 mm(L1)의 크기와 두께(h) 1.6 mm, 그리고 비유전율이 4.4인 FR-4 기판 위에 22 mm(W6+W4+W5) × 43 mm(L1+L2+L3+L5)의 크기로 설계되었다. 제작 및 측정결과로부터, -10dB 기준으로 900 MHz 900 MHz 대역에서 108 MHz (0.908~1.016 GHz), 2.4 GHz 대역에서 360 MHz (2.276~2.636 GHz), 그리고 5.0/6.0 GHz 대역에서 2,484 MHz (4.904~7.388 GHz)의 대역폭을 얻었다. 또한 요구되는 주파수 삼중대역에서 이득과 방사패턴 특성을 측정하여 나타내었다.

타입별 풍력 발전기 설치에 따른 민감 부하의 순간전압강하 저감 효과 비교 분석 연구 (A Study of the Mitigating Effect Comparison of Voltage Sags by WTG Types Based on the Concept of Area of Vulnerability)

  • 박세준;윤민한
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1682-1688
    • /
    • 2017
  • In modern society, the number of industrial customers using equipment sensitive particularly to voltage sags is rapidly increasing. As voltage sags can cause loss of information as well as false operation of the control device, it results in the vast economic damage in industrial processes. One way to mitigate voltage sags in the sensitive loads is the installation of distributed generation (DGs) on the periphery of these loads. In addition, renewable energy sources are currently in the spot light as the potential solution for the energy crisis and environmental issues. In particular, wind power generation which is connected to a grid is rising rapidly because it is energy efficient and also economically feasible compared to other renewable energy sources. On the basis of the above information, in this paper, with Wind Turbine Generators (WTGs) installed nearby the sensitive load, the analysis of the mitigating effect comparison by types of WTGs is performed using voltage sag assessment on the IEEE-30 bus test system. That is, the areas of vulnerability according to types of WTGs are expected to be different by how much reactive power is produced or consumed as WTG reactive power capability is related to the types of WTGs. Using the concept of 'Vulnerable area' with the failure rate for buses and lines, the annual number of voltage sags at the sensitive load with the installation of WTGs per type is studied. This research will be anticipated to be useful data when determining the interconnection of wind power generation in the power system with the consideration of voltage sags.

제어 가능한 전류원 기반의 인버터를 이용한 실제적 태양광 발전 시스템 모델링 (Modeling of Practical Photovoltaic Generation System using Controllable Current Source based Inverter)

  • 오윤식;조규정;김민성;김지수;강성범;김철환;이유진;고윤태
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1340-1346
    • /
    • 2016
  • Utilization of Distributed Generations (DGs) using Renewable Energy Sources (RESs) has been constantly increasing as they provide a lot of environmental, economic merits. In spite of these merits, some problems with respect to voltage profile, protection and its coordination system due to reverse power flow could happen. In order to analyze and solve the problems, accurate modeling of DG systems should be preceded as a fundamental research task. In this paper, we present a PhotoVoltaic (PV) generation system which consists of practical PV cells with series and parallel resistor and an inverter for interconnection with a main distribution system. The inverter is based on controllable current source which is capable of controlling power factors, active and reactive powers within a certain limit related to amount of PV generation. To verify performance of the model, a distribution system based on actual data is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are also performed and it is shown from simulation results that the model presented is very effective to study DG-related researches.

GPS/DCS/WLAN 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작 (Design and Fabrication of Triple Band Antenna Applicable to GPS/DCS/WLAN System)

  • 김민재;박상욱;윤중한
    • 한국전자통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.475-482
    • /
    • 2019
  • 본 논문에서는 GPS/DCS/WLAN에 시스템에 활용 가능하도록 삼중대역 안테나를 제안하였다. 제안된 안테나는 두 개의 스트립 선로와 접지면에 세 개의 슬릿을 삽입하여 요구하는 주파수 대역과 반사손실 특성을 얻었다. 제안된 안테나는 $31mm(W1){\times}50mm(L1)$의 크기와 두께(h) 1.6 mm, 그리고 비유전율이 4.4인 FR-4 기판 위에 $22mm(W7+W12+W8){\times}43mm(L4+L3)$의 크기로 설계되었다. 제작 및 측정결과로부터, -10dB 기준으로 340 MHz (1.465~1.805 GHz), 480 MHz (2.155~2.635 GHz), 1950 MHz (4.975~6.925 GHz)의 대역폭을 얻었다. 또한 요구되는 주파수 삼중대역에서 이득과 방사패턴 특성을 측정하여 나타내었다.