• Title/Summary/Keyword: DGPS technique

Search Result 44, Processing Time 0.021 seconds

Implementation of Precise Drone Positioning System using Differential Global Positioning System (차등 위성항법 보정을 이용한 정밀 드론 위치추적 시스템 구현)

  • Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2020
  • This paper proposes a precise drone-positioning technique using a differential global positioning system (DGPS). The proposed system consists of a reference station for error correction data production, and a mobile station (a drone), which is the target for real-time positioning. The precise coordinates of the reference station were acquired by post-processing of received satellite data together with the reference station location data provided by government infrastructure. For the system's implementation, low-cost commercial GPS receivers were used. Furthermore, a Zigbee transmitter/receiver pair was used to wirelessly send control signals and error correction data, making the whole system affordable for personal use. To validate the system, a drone-tracking experiment was conducted. The results show that the average real-time position error is less than 0.8 m.

Estimating Spatial and Vertical Distribution of Seagrass Habitats Using Hydroacoustic System (수중음향을 이용한 해초 서식처(Seagrass Habitats)의 공간 및 수직 분포 추정)

  • Kang, Don-Hyung;Cho, Sung-Ho;La, Hyoung-Sul;Kim, Jong-Man;Na, Jung-Yul;Myoung, Jung-Goo
    • Ocean and Polar Research
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2006
  • Seagrass meadows are considered as critical habitats for a wide variety of marine organisms in coastal and estuarine ecosystems. In many cases, studies on the spatial/temporal distribution of seagrass have depended on direct observations using SCUBA diving. As an alternative method fur studying seagrass distribution, an application of hydroacoustic technique has been assessed for mapping seagrass distribution in Dongdae Bay, on the south coast of Korea, in September 2005. Data were collected using high frequency transducer (420 kHz split-beam), which was installed with towed body system. The system was linked to DGPS to make goo-referenced data. Additionally, in situ seagrass distribution has been observed using underwater cameras and SCUBA diving at four stations in order to compare with acoustic data. Acoustic survey was conducted along 23 transects with 3-4 blot ship speed. Seagrass beds were vertically limited to depths less than 3.5m and seagrass height ranged between 55 and 90cm at the study sites. Dense seagmss beds were mainly found at the entrance of the bay and at a flat area around the center of the bay. Although the study area was a relatively small, the vertical and spatial distributions of the seagrass were highly variable with bathymetry and region. Considering dominant species, Zostera marina L., preliminary estimation of seagrass biomass with acoustic and direct sampling data was approximately $56.55g/m^2$, and total biomass of 104 tones (coefficient variation: 25.77%) was estimated at the study area. Hydroacoustic method provided valuable information to understand distribution pattern and to estimate seagrass biomass.

Enhancement of UAV-based Spatial Positioning Using the Triangular Center Method with Multiple GPS

  • Joo, Yongjin;Ahn, Yushin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.379-388
    • /
    • 2019
  • Recently, a technique for acquiring spatial information data using UAV (Unmanned Aerial Vehicle) has been greatly developed. It is a very crucial issue of the GIS (Geographic Information System) mapping system that passes way point in the unmanned airframe and finally measures the accurate image and stable localization to the desired destination. Though positioning using DGPS (Differential Global Navigation System) or RTK-GPS (Real Time Kinematic-GPS) guarantee highly accurate, they are more expensive than the construction of a single positioning system using a single GPS. In the case of a low-priced single GPS system, the stability of the positioning data deteriorates. Therefore, it is necessary to supplement the uncertainty of the absolute position data of the UAV and to improve the accuracy of the current position data economically in the operating state of the UAV. The aim of this study was to present an algorithm enhancing the stability of position data in a single GPS mode of UAV with multiple GPS. First, the arrangement of multiple GPS receivers through the center of gravity of the UAV were examined. Next, MD (Mahalanobis Distance) is applied to detect instantaneous errors of GPS data in advance and eliminate outliers to increase the accuracy of previously collected multiple GPS data. Processing procedure for multiple GPS reception data by applying the center of the triangular method were presented to improve the position accuracy. Second, UAV navigation systems integrated multiple GPS through configuration of the UAV specifications were implemented. Using the unmanned airframe equipped with multiple GPS receivers, GPS data is measured with the TCM (Triangular Center Method). In addition, UAV equipped with multiple GPS were operated in study area and locational accuracy of multiple GPS of UAV with VRS (Virtual Reference Station) GNSS surveying were compared. The result showed that the error factors are compensated, and the error range are reduced, resulting in the reliability of the corrected value. In conclusion, the result in this paper is expected to realize high-precision position estimation at low cost in UAV using multiple low-cost GPS receivers.

Dementia Patient Wandering Behavior and Anomaly Detection Technique through Biometric Authentication and Location-based in a Private Blockchain Environment (프라이빗 블록체인 환경에서 생체인증과 위치기반을 통한 치매환자 배회행동 및 이상징후 탐지 기법)

  • Han, Young-Ae;Kang, Hyeok;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.119-125
    • /
    • 2022
  • With the recent increase in dementia patients due to aging, measures to prevent their wandering behavior and disappearance are urgently needed. To solve this problem, various authentication methods and location detection techniques have been introduced, but the security problem of personal authentication and a system that can check indoor and outdoor overall was lacking. In order to solve this problem, various authentication methods and location detection techniques have been introduced, but it was difficult to find a system that can check the security problem of personal authentication and indoor/outdoor overall. In this study, we intend to propose a system that can identify personal authentication, basic health status, and overall location indoors and outdoors by using wristband-type wearable devices in a private blockchain environment. In this system, personal authentication uses ECG, which is difficult to forge and highly personally identifiable, Bluetooth beacon that is easy to use with low power, non-contact and automatic transmission and reception indoors, and DGPS that corrects the pseudorange error of GPS satellites outdoors. It is intended to detect wandering behavior and abnormal signs by locating the patient. Through this, it is intended to contribute to the prompt response and prevention of disappearance in case of wandering behavior and abnormal symptoms of dementia patients living at home or in nursing homes.