• Title/Summary/Keyword: DGGE

Search Result 273, Processing Time 0.021 seconds

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Establishment, Bacterial Community and Performance Evaluation

  • Pham, Hai The;Tran, Hien Thi;Vu, Linh Thuy;Dang, Hien The;Nguyen, Thuy Thu Thi;Dang, Thu Ha Thi;Nguyen, Mai Thanh Thi;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1104-1116
    • /
    • 2019
  • In this study, we investigated the potential of using sediment bioelectrochemical systems (SBESs) for in situ treatment of the water and sediment in brackish aquaculture ponds polluted with uneaten feed. An SBES integrated into a laboratory-scale tank simulating a brackish aquaculture pond was established. This test tank and the control (not containing the SBES) were fed with shrimp feed in a scheme that mimics a situation where 50% of feed is uneaten. After the SBES was inoculated with microbial sources from actual shrimp pond sediments, electricity generation was well observed from the first experimental week, indicating successful enrichment of electrochemically active bacteria in the test tank sediment. The electricity generation became steady after 3 weeks of operation, with an average current density of $2.3mA/m^2$ anode surface and an average power density of $0.05mW/m^2$ anode surface. The SBES removed 20-30% more COD of the tank water, compared to the control. After 1 year, the SBES also reduced the amount of sediment in the tank by 40% and thus could remove approximately 40% more COD and approximately 52% more nitrogen from the sediment, compared to the control. Insignificant amounts of nitrite and nitrate were detected, suggesting complete removal of nitrogen by the system. PCR-DGGE-based analyses revealed the dominant presence of Methylophilus rhizosphaerae, Desulfatitalea tepidiphila and Thiothrix eikelboomii, which have not been found in bioelectrochemical systems before, in the bacterial community in the sediment of the SBES-containing tank. The results of this research demonstrate the potential application of SBESs in helping to reduce water pollution threats, fish and shrimp disease risks, and thus farmers' losses.

Effect of Soybean Meal and Soluble Starch on Biogenic Amine Production and Microbial Diversity Using In vitro Rumen Fermentation

  • Jeong, Chang-Dae;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Soriano, Alvin P.;Cho, Kwang Keun;Jeon, Che-Ok;Lee, Sung Sil;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • This study was conducted to investigate the effect of soybean meal (SM) and soluble starch (SS) on biogenic amine production and microbial diversity using in vitro ruminal fermentation. Treatments comprised of incubation of 2 g of mixture (expressed as 10 parts) containing different ratios of SM to SS as: 0:0, 10:0, 7:3, 5:5, 3:7, or 0:10. In vitro ruminal fermentation parameters were determined at 0, 12, 24, and 48 h of incubation while the biogenic amine and microbial diversity were determined at 48 h of incubation. Treatment with highest proportion of SM had higher (p<0.05) gas production than those with higher proportions of SS. Samples with higher proportion of SS resulted in lower pH than those with higher proportion of SM after 48 h of incubation. The largest change in $NH_3$-N concentration from 0 to 48 h was observed on all SM while the smallest was observed on exclusive SS. Similarly, exclusive SS had the lowest $NH_3$-N concentration among all groups after 24 h of incubation. Increasing methane ($CH_4$) concentrations were observed with time, and $CH_4$ concentrations were higher (p<0.05) with greater proportions of SM than SS. Balanced proportion of SM and SS had the highest (p<0.05) total volatile fatty acid (TVFA) while propionate was found highest in higher proportion of SS. Moreover, biogenic amine (BA) was higher (p<0.05) in samples containing greater proportions of SM. Histamines, amine index and total amines were highest in exclusive SM followed in sequence mixtures with increasing proportion of SS (and lowered proportion of SM) at 48 h of incubation. Nine dominant bands were identified by denaturing gradient gel electrophoresis (DGGE) and their identity ranged from 87% to 100% which were mostly isolated from rumen and feces. Bands R2 (uncultured bacterium clone RB-5E1) and R4 (uncultured rumen bacterium clone L7A_C10) bands were found in samples with higher proportions of SM while R3 (uncultured Firmicutes bacterium clone NI_52), R7 (Selenomonas sp. MCB2), R8 (Selenomonas ruminantium gene) and R9 (Selenomonas ruminantium strain LongY6) were found in samples with higher proportions of SS. Different feed ratios affect rumen fermentation in terms of pH, $NH_3$-N, $CH_4$, BA, volatile fatty acid and other metabolite concentrations and microbial diversity. Balanced protein and carbohydrate ratios are needed for rumen fermentation.

Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes (펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리)

  • Bae, Jae-Sang;Kim, Jong-Hyang;Choi, Jung-Hye;Ekpeghere, Kalu I.;Kim, Soo-Gon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.356-363
    • /
    • 2011
  • The accidental releases of total petroleum hydrocarbons (TPH) due to oil spills frequently ended up with soil and ground water pollution. TPH may be degraded through physicochemical and biological processes in the environment but with relatively slow rates. In this study an attempt has been made to develop an integrated chemical and biological treatment technology in order to establish an efficient and environment-friendly restoration technology for the TPH contaminated soils. A Fenton-like reaction was employed as a preceding chemical treatment process and a bioaugmentation process utilizing a diesel fuel degrader consortium was subsequently applied as a biological treatment process. An efficient chemical removal of TPH from soils occurred when the surfactant OP-10S (0.05%) and oxidants ($FeSO_4$ 4%, and $H_2O_2$ 5%) were used. Bioaugmentation of the degrader consortium into the soil slurry led to an increase in their population density at least two orders of magnitude, indicating a good survival of the degradative populations in the contaminated soils ($10^8-10^9$ CFU/g slurry). TPH removal efficiencies for the Fenton-treated soils increased by at least 57% when the soils were subjected to bioaugmentation of the degradative consortium. However, relatively lower TPH treatment efficiencies (79-83%) have been observed in the soils treated with Fenton and the degraders as opposed to the control (95%) that was left with no treatment. This appeared to be due to the presence of free radicals and other oxidative products generated during the Fenton treatment which might inhibit their degradation activity. The findings in this study will contribute to development of efficient bioremediation treatment technologies for TPH-contaminated soils and sediments in the environment.