• 제목/요약/키워드: DFIG(Double Fed Induction Generator)

검색결과 11건 처리시간 0.031초

계통 연계형 권선형 유도발전기의 동작특성 연구 (Study on the Operating Characteristics of Double Fed Induction Generator Connected AC network)

  • 김찬기;한상열;추진부
    • 전력전자학회논문지
    • /
    • 제11권3호
    • /
    • pp.247-257
    • /
    • 2006
  • 본 논문은 이중여자권선을 갖는 권선형 유도발전기와 농형유도발전기사이의 운전특성비교를 보여준다. 농형유도발 전기는 자화리액턴스에 의한 무효전력소비 때문에, 역률을 보상하기 위한 콘덴서를 필요로 하나, DFIG는 회전자에 Back-To Back컨버터를 가지고 있기 때문에 저속/고속에서 유도발전기가 운전이 가능하다. 본 논문에서는 PSCAD/TMTDC를 이용하여 농형유도기와 DFIG의 응답특성이 분석되었다.

DFIG 풍력발전시스템에 관한 연구 (Study on Doubly Fed Induction Generator in a wind turbine)

  • 한상열;차삼곤;최원호;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.253-256
    • /
    • 2006
  • This paper shows operating characteristics of DFIG(Double Fed Induction Generator) for wind turbine. The back to back PWM voltage-fed inverter connected between the rotor and grid network operated sub and super-synchronous operating mode, and the vector-controlled DFIG enables the decoupling between active and reactive power as well as between torque and power factor. This paper is validated by simulations and experimental results.

  • PDF

계통 연계형 권선형 유도발전기의 동작특성 연구 (Study on the Operating Characteristics of Double Fed Induction Generator Connected AC network)

  • 김찬기;박종광;최영도;임성주;문형배
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.323-326
    • /
    • 2006
  • This paper shows the comparison of operating characteristics between squirrel cage induction generator and DFIG(Double Fed Induction Generator). Because squirrel cage induction generator consume the reactive power due to magnetizing reactance, the capacitor is need to compensate the reactive power. Otherwise, two back-to-back PWM voltage-fed inverters connected between the stator and the rotor allow sub/super synchronous operation with low distortion currents. In this paper, the response characteristics of squirrel cage induction generator and DFIG, were analyzed and investigated using PSCAD/EMTDC.

  • PDF

Performance of Double Fed Induction Machine at Sub- and Super-Synchronous Speed in Wind Energy Conversion System

  • Eskander, Mona N.;Saleh, Mahmoud A.;El-Hagry, Mohsen M.T.
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.575-581
    • /
    • 2009
  • In this paper two modes of operating a wound rotor induction machine as a generator at sub-and super-synchronous speeds in wind energy conversion systems are investigated. In the first mode, known as double fed induction generator (DFIG), the rotor circuit is fed from the ac mains via a controlled rectifier and a forced commutated inverter. Adjusting the applied rotor voltage magnitude and phase leads to machine operation as a generator at sub-synchronous speeds. In the second mode, the machine is operated in a slip recovery scheme where the slip energy is fed back to the ac mains via a rectifier and line commutated inverter. This mode is described as double output induction generator (DOIG) leading to increase the efficiency of the wind-to electrical energy conversion system. Simulated results of both modes are presented. Experimental verification of the simulated results are presented for the DOIG mode of operation, showing larger amount of power captured and better power factor when compared to conventional induction generators.

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.

Implementation of Fuzzy Controller for Rotor Side Converter of DFIG

  • Sastrowijoyo, Fajar;Choi, Jaeho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.131-132
    • /
    • 2012
  • Implementation of fuzzy controller for the rotor side converter of a utility-connected double-fed induction generator (DFIG) for wind power generation systems (WPGS) described in this paper. In the control schemes, real and reactive powers (PQ) at the stator side of DFIG are strictly controlled to supply the power to the grid. A TMS320VC33 DSP is selected as the controller of this system.

  • PDF

2MW급 DFIG 최적 설계 및 성능 평가에 관한 연구 (The Performance Evaluation and the Optimal Design of 2MW DFIG)

  • 조성호;오영진;문병선;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.382-385
    • /
    • 2007
  • The optimal design and characteristic analysis of Double Fed Induction Generator(DFIG) was performed. The purpose of the paper is to verify the accuracy of design and the reliability of DFIG by experiment. A grid connection experiment is performed to confirm generating performance in wide operating range. In this experiment, 2.7MW M/G set is used. The finite element method is applied to calculate parameters and characteristic analysis of DFIG. And in order to reduce design time and efforts, Design of Experiment(DOE) is used. The experimental results are compared with the optimum design results.

  • PDF

The Harmonic Current Mitigation of DFIG under Unbalanced Grid Voltage and Non-linear Load Conditions

  • Thinh, Quach Ngoc;Kim, Eel-Hwan
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.83-84
    • /
    • 2011
  • This paper presents an analysis and a novel strategy for a doubly fed induction generator (DFIG) based wind energy conversion system under unbalanced grid voltage and non-linear load conditions. A proportional-resonant (PR) current controller is applied in both grid side converter (GSC) and rotor side converter (RSC). The RSC is controlled to mitigate the stator active power and the rotor current oscillations at double supply frequency under unbalanced grid voltage while the GSC is controlled to mitigate ripples in the dc-link voltage and compensate harmonic components of the network current. Simulation results using Psim simulation program are presented for a 2 MW DFIG to confirm the effectiveness of the proposed control strategy.

  • PDF

풍력발전(DFIG)의 고압배전선로의 사고특성 해석에 관한 연구 (A Study on Fault Characteristics of Wind Power in Distribution Feeders)

  • 김소희;김병기;노대석
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1288-1295
    • /
    • 2012
  • 2008년도 지식경제부의 전망에 의하면 신재생에너지전원 중 풍력발전의 보급전망은 2020년 37%, 2030년 42%에 달하고, 2012년부터 시행 예정인 신재생에너지 의무할당제(Renewable Portfolio Standard-RPS)의 도입으로 태양광 및 풍력 등의 신재생에너지가 향후 지속적으로 배전계통에 연계 운용될 것으로 예상된다. 현재 풍력은 배전계통에 전용선로로 연계되어 계통에 미치는 영향은 미미하지만, 3[MW] 이상의 대규모 풍력발전이 일반 배전선로로 확대 운용되면, 풍력발전 연계용 변압기 및 풍력발전기의 %임피던스에 의한 사고전류 변동으로 보호계전기(OCR, OCGR)의 오 부동작을 야기할 수 있다. 따라서 본 논문에서는 대표적인 풍력발전기인 이중여자유도발전기(Double-Fed Induction Generator-DFIG)가 고압 배전선로에 연계되어 운전되는 경우, 3상단락, 2선단락 및 1선지락의 사고특성을 분석하기 위하여, 전력계통 상용소프트웨어인 PSCAD/EMTDC를 이용하여 풍력발전기의 모델링과 시뮬레이션을 수행하고, 대칭좌표법을 통한 이론적인 수치해석의 결과치를 비교/분석하여, 제안한 수법의 유용성을 확인하였다.