• Title/Summary/Keyword: DEVD

Search Result 41, Processing Time 0.041 seconds

Mechanisms of Tributyltin-induced Leydig Cell Apoptosis (유기주석화합물이 웅성생식세포주에 미치는 영향)

  • Lee, Kyung-Jin;Kim, Deok-Song;Ra, Myung-Suk;Wui, Seong-Uk;Im, Wook-Bin;Park, Hueng-Sik;Lee, Jong-Bin
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.89-94
    • /
    • 2003
  • Tributyltin (TBT) used world-wide in antifouling paints for ships is a widespread environmental pollutant and cause reproductive organs atrophy in rodents. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reproductive organs by TBT. In this study, we investigated that the mechanisms underlying DNA fragmentation induced by TBT in the rat leyding cell line, R2C. Effects of TBT on intracellular Ca$\^$2+/ level and reactive oxygen species (ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular Ca$\^$2+/ level in a time-dependent manner. The rise in intracellular Ca$\^$2+/ level was followed by a time-dependent generation of reactive oxygen species (ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular Ca$\^$2+/ chelator, indicating the important role of Ca$\^$2+/ in R2C during these early intracellular events. In addition, Z-DEVD FMK, a caspase-3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular Ca$\^$2+/ level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases,and finally results in DNA fragmentation.

Pro-apoptotic Effects of Platycodin D Isolated from Platycodon grandiflorum in Human Leukemia Cells (도라지 유래 사포닌 platycodin D에 의한 인체 백혈병세포의 apoptosis 유도)

  • Park, Sang Eun;Lee, Su Young;Shin, Dong Yeok;Jeong, Jin-Woo;Jin, Myung Ho;Park, Seon Young;Chung, Yoon Ho;Hwang, Hye Jin;Hong, Sang Hoon;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.389-398
    • /
    • 2013
  • Platycodin D is a major constituent of triterpene saponins, which is found in the root of Platycodon grandiflorum, Platycodi Radix, which is widely used in traditional Oriental medicine for the treatment of many chronic inflammatory diseases. Several pharmacological effects of this compound have been reported recently, such as anti-inflammation, immunogenicity, anti-adipogenesis, lowered cholesterol, and anti-cancer activity. However, the mechanism by which this action occurs is poorly understood. In this study, we found that platycodin D greatly increased the potential of the anti-proliferative effect in various cancer cell lines. Our data revealed that platycodin D treatment resulted in a time- and concentration-response growth inhibition of U937 cells by inducing apoptosis, as evidenced by the formation of apoptotic bodies, chromatin condensation, and the accumulation of cells in the sub-G1 phase. Apoptosis induction of U937 cells by platycodin D correlated with an increase in the Bax/Bcl-2 ratio and caused the down-regulation of IAP family members. In addition, platycodin D treatment resulted in proteolytic activation of caspase-3, the concomitant degradation of poly(ADP-ribose) polymerases, and the collapse of the mitochondria membrane potential (${\Delta}{\Psi}_m$). However, the cytotoxic effects induced by platycodin D treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrated the important role that caspase-3 played in the observed cytotoxic effect. These findings suggest that platycodin D may be a potential chemotherapeutic agent for use in the control of human leukemia U937 cells. These findings also provided important new insights into possible molecular mechanisms of the anti-cancer activity of platycodin D.

Esculetin Induces Apoptosis through Caspase-3 Activation in Human Leukemia U937 Cells (Esculetin의 caspase-3 활성을 통한 U937 인체 혈구암세포의 세포사멸 유도)

  • Park, Cheol;Hyun, Sook-Kyung;Shin, Woo-Jin;Chung, Kyung-Tae;Choi, Byung-Tae;Kwon, Hyun-Ju;Hwang, Hye-Jin;Kim, Byung-Woo;Park, Dong-Il;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.249-255
    • /
    • 2009
  • Esculetin, a coumarin compound, has been known to inhibit proliferation and induce apoptosis in several types of human cancer cells. However, the molecular mechanisms involved in esculetin-induced apoptosis are still uncharacterized in human leukemia cells. In this study, we have investigated whether esculetin exerts anti-proliferative and apoptotic effects on human leukemia U937 cells. It was found that esculetin could inhibit cell viability in a time-dependent manner, which was associated with the induction of apoptotic cell death such as increased populations of apoptotic- sub G1 phase. Apoptosis of U937 cells by esculetin was associated with an inhibition of Bcl-2/Bax binding activity, formation of tBid, down-regulation of X-linked inhibitor of apoptotic protein (XIAP) expression, and up-regulation of death receptor 4 (DR4) and FasL expression. Esculetin treatment also induced the degradation of ${\beta}$-catenin and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Furthermore, a caspase-3 specific inhibitor, z-DEVD-fmk, significantly inhibited sub-G1 phase DNA content, morphological changes and degradation of ${\beta}$-catenin and DEE45/ICAD. These results indicated that a key regulator in esculetin-induced apoptosis was caspase-3 in human leukemia U937 cells.

Nitric Oxide-Induced Apoptosis of Human Dental Pulp Cells Is Mediated by the Mitochondria-Dependent Pathway

  • Park, Min Young;Jeong, Yeon Jin;Kang, Gi Chang;Kim, Mi-Hwa;Kim, Sun Hun;Chung, Hyun-Ju;Jung, Ji Yeon;Kim, Won Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway.

Apoptosis Induction by Methanol Extract of Prunus mume Fruits in Human Leukemia U937 Cells (인체 백혈병세포에서 매실 추출물에 의한 apoptosis 유도)

  • Chung, You-Jeong;Park, Cheol;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1109-1119
    • /
    • 2011
  • In the present study, the pro-apoptotic effects of methanol extract of Prunus mume fruits (MEPM) in human leukemia U937 cells were investigated. It was found that exposure to MEPM resulted in growth inhibition in a concentration-dependent manner by inducing apoptosis. The induction of apoptotic cell death in U937 cells by MEPM was correlated with a down-regulation of inhibitor of apoptosis protein (IAP) family, such as X-linked inhibitor of apoptosis protein (XIAP) and survivin, anti-apoptotic Bcl-2, up-regulation of FasL and cleavage of Bid. MEPM treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP) and ${\beta}$-catenin. In addition, apoptotic cell death induced by MEPM was significantly inhibited by z-DEVD-fmk, a caspase-3 specific inhibitor, which demonstrates the important role of caspase-3 in the apoptotic process by MEPM in U937 cells. Taken together, these findings suggest that P. mume extracts may be a potential chemotherapeutic agent for the control of human leukemia cells and further studies will be needed to identify the active compounds.

Quinacrin Induces Cytochrome c-dependent Apoptotic Signaling in Human Cervical Carcinoma Cells

  • Fasanmade, Adedigbo A.;Owuor, Edward D.;Ee, Rachel P.L.;Qato, Dima;Heller, Mark;Kong, Ah Ng Tony
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.126-135
    • /
    • 2001
  • Quinacrine (QU), a phospholipase-A2 (PLA-2) inhibitor has been used clinically as a chemotherapeutic adjuvant. To understand the mechanisms leading to its chemotherapeutic effect, we have investigated QU-induced apoptotic signaling pathways in human cervical squamous carcinoma HeLa cells. In this study, we found that QU induced cytochrome c-dependent apoptotic signaling. The release of pro-apoptotic cytochrome c was QU concentration- and time-dependent, and preceded activation of caspase-9 and -3. Flow cytometric FACScan analysis using fluorescence intensities of $DiOC_6$/ demonstrated that QU-induced cytochrome c release was independent of mitochondrial permeability transition (MPT), since the concentrations of QU that induced cytochrome c release did not alter mitochondrial membrane potential (${\blacktriangle}{\Psi}_m$). Moreover, kinetic analysis of caspase activities showed that cytochrome c release led to the activation of caspase-9 and downstream death effector caspase-3, Caspase-3 inhibitor (Ac-DEVD-CHO) partially blocked QU-induced apoptosis, suggesting the importance of caspase-3 in this apoptotic signaling mechanism. Supplementation with arachidonic acid (AA) sustained caspase-3 activation induced by QU. Using inhibitors against cellular arachidonate metabolism of lipooxygenase (Nordihydroxyguaiaretic Acid, NDGA) and cyclooxygenase (5,8,11,14-Eicosatetraynoic Acid, ETYA) demonstrated that QU-induced apoptotic signaling may be dependent on its role as a PLA-2 inhibitor. Interestingly, NDCA attenuated QU-induced cytochrome c release, caspase activity as well as apoptotic cell death. The blockade of cytochrome c release by NDCA was much more effective than that attained with cyclosporin A (CsA), a MPT inhibitor. ETYA was not effective in blocking cytochrome c release, except under very high concentrations. Caspase inhibitor z-VAD blocked the release of cytochrome c suggesting that this signaling event is caspase dependent, and caspase-8 activation may be upstream of the mitochondrial events. In summary, we report that QU induced cytochrome c-dependent apoptotic signaling cascade, which may be dependent on its role as a PLA-2 inhibitor. This apoptotic mechanism induced by QU may contribute to its known chemotherapeutic effects.

  • PDF

Caspase-3 Specifically Cleaves $p21^{WAF1/CIP1}$ in the Earlier Stage of Apoptosis in SK-HEP-1 Human Hepatoma Cells

  • Park, Jeong-Ae;Kim, Kyu-Won;Kim, Shin-Il;Lee, Seung-Ki
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.231-243
    • /
    • 1998
  • In the present study, we provide evidence that ginsenoside $Rh_2$ (G-$Rh_2$) as well as staurosporine induces apoptosis of human hepatoma SK-HEP-1 cells by caspase 3-mediated processing of $p21^{WAFI/CIPI}$ in the early stage of apoptosls. Immunoblottings showed that G-$Rh_2$ as well as statrosporine induced the processing of caspase-3 to an active form, pl7. In stable Bcl-2 transfectants however, G-$Rh_2$ induced DNA fragmentation, while staurosporine did not. In the early stage of apoptosis, $p21^{WAFI/CIPI}$ was detected to undergo proteolytic processing specifically conducted by caspase-3. $p21^{WAFI/CIPI}$ translated in vitro was cleaved into a p14 fragment, when incubated with cell extracts obtained from either G-$Rh_2$- or staurosporine-treated cells. Cleavage was equally inhibited in both cases by adding Ac-DEVD-cho, a specific caspase-3 inhibitor, but not by Ac-YVkD-cho, a specific caspase-l inhibitor. Similarly, $p21^{WAFI/CIPI}$ was efficiently leaved by recombinant caspase-3 overexpressed in E. coli. Moreover, the endogenous $p21^{WAFI/CIPI}$ of untreated-cell extracts was also cleaved by recombinant caspase-3. Mutation analysis allowed identification of two caspase-3 cleavage sites, $DHVD^{112}$/L and $SMTD^{149}$/F, which are located within, or near the interaction domains for cyclins, Cdks, and PCNA. Taken together, these results show that G-$Rh_2$ as well as staurosporine increases caspase-3 activity, which in turn directly cleaves $p21^{WAFI/CIPI}$ resulting in elevation of Cdk kinase activity in the early stages of apoptosis. We propose that proteolytic cleavage of $p21^{WAFI/CIPI}$ is a functionally relevant event that allows unleashing the cyclin/Cdk activity from the inhibitor seen in the earlier stage of apoptosis, the event of which may be associated with the triggering mechanism for the execution of apoptosis.

  • PDF

Study of Hedyotis Diffusa Methanol Extract on Anti-tumoral Effect and Mechanism (백화사설초(白花蛇舌草) 메탄올 추출물(抽出物)의 항종양(抗腫瘍) 효과(效果) 및 항암(抗癌) 기전(機轉)에 관(關)한 연구(硏究))

  • No, Hoon-Jeong;Moon, Gu;Moon, Seok-Jae;Won, Jin-Hee;Moon, Young-Ho;Park, Rae-Gil
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.6 no.1
    • /
    • pp.81-97
    • /
    • 2000
  • Objectives: This experimental study was carried out to evaluate the effects of aqueous and methanol extracts of Hedyotis diffusa which has long been used for cancer treatment in oriental medicines on the induction of apoptotic cell death in human lymphoid leukemia cell line, HL-60. Methods: Cells were treated with various concentrations (200 to $0.4{\mu}g$) and periods (6 to 30 hr) of $H_2O$ and methanol extracts of Hedyotis diffusa. Then, cells were tested for viability by MTT assay. Cells wrere treated with $200{\mu}g/ml$ of methanol extract fork various periods. Genomic DNA was isolated, separated, on 1.5% agarose gels, stained with ethidium bromide and visualized under UV light. Cells were treated with $200{\mu}g/ml$ of each extract for 16 hr. Then, cells were treated with Hoechst dye 33342 and observed by fluorescence microscopy. Cells were treated with various doses of each for 12 hr and $100{\mu}g/ml$ of methanol extract for various periods. Lysate from the cells used to measure the activity of Caspase-1 and-3 proteases by using fluorogenic peptide substrates including acetyl-YVAD-AMC and acetyl-DEVD-AMC, respectively. Cells were treated with $200{\mu}g/ml$ of each extract for various periods. Cell lysates were immunoprecipated with anti-JNKl antibodies. The immune complex was reacted with $32^p-ATP$ and c-Jun as a substrate. The phosphotransferase activity of JNKI was measured by using PhosphoImage analyzer (Fuji Co., Japan). Nuclear extracts were isolated and incubated with oligonucleotide probe of $NF-{\kappa}B$. Transcriptional activation of ${\kappa}B$ was measured by using EMSA and visualized by PhosphoImage analyzer (Fuji Co, Japan). Cell lysates were prepared and analyzed by Western blotting with anti-Bc12 antibodies and anti-Bax antibodies. Cells were pretreated with various doses of methanol extract for 2 hr. Then, the extract was removed by centrifugation. Cells were resuspended with RPMI-1640 media containing 0.3% agarose, 10% FBS, overlayred onto bottom layer agarose and incubated at $CO_2$ incubator for 6 days. The number of colony was counted under light microscopy ($\time100$). Results: The death of HL-60 cells was markedly induced by the addition of methanol extract of Hedyotis diffusa in a dose and time-dependent manners. The apoptotic characteristic ladder pattern of DNA strand break was observed in death of HL-60 cells. In addition, it was shown nucleus chromatin condensation and fragmentation under Hoechst staining. Therefore, Hedyotis diffusa extract-induced death of HL-60 cells is mediated by apoptotic signaling processes. The activity of Caspase 3-like proteases remained in a basal level in HL-60 cells treated with aqueous extract of Hedyotis diffusa. However, it was markedly increased in HL-60 cells treated with methanol extract of Hedyotis diffusa. In addition, the phosphotransferase activity of JNKl was increased in HL-60 cells treated with methanol extract of Hedyotis diffusa. Furthermore, the activation of transcriptional activator, $NF-{\kappa}B$ was markedly induced by methanol extract of Hedyotis diffusa. Anti-apoptotic Bc12 was cleaved into 23Kda fragment by treatment of methanol extract of Hedyotis diffusa. However, expression of proapoptotic Bax protein was increased by treatment of methanol extract of Hedyotis diffusa in a time-dependent manner. Furthermore, methanol extract markedly inhibited the colony forming efficiency of HL-60 cells in semisolid agar culture. Conclusions: Above results suggest that methanol extract of Hedyotis diffusa induces the apoptotic death of human leukemic HL-60 cells via activations of Caspase-3 proteases, JNKI, transcriptional activator $NF-{\kappa}B$, In addition, our results also suggest that methanol extract of Hedyotis diffusa reduces the malignant potential of HL-60 cells via down regulation of colony forming effciency through cleavage of Bc12 as well as induction of Bax.

  • PDF

Role of p-38 MAP Kinase in apoptosis of hypoxia-induced osteoblasts (저산소 상태로 인한 조골세포 고사사기전에서 p-38 MAP kinase의 역할에 관한 연구)

  • Yoon, Jeong-Hyeon;Jeong, Ae-Jin;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.169-183
    • /
    • 2003
  • Tooth movement by orthodontic force effects great tissue changes within the periodontium, especially by shifting the blood flow in the pressure side and resulting in a hypoxic state of low oxygen tension. The aim of this study is to elucidate the possible mechanism of apoptosis in response to hypoxia in MC3T3El osteoblasts, the main cells in bone remodeling during orthodontic tooth movement. MC3T3El osteoblasts under hypoxic conditions ($2\%$ orygen) resulted in apoptosis in a time-dependent manner as estimated by DNA fragmentation assay and nuclear morphology stained with fluorescent dye, Hoechst 33258. Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, completely suppressed the DNA ladder in response to hypoxia. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-1 activity (YVADase) was detected. To confirm what caspases are involved in apoptosis, Western blot analysis was performed using anti-caspase-3 or -6 antibodies. The 10-kDa protein, corresponding to the active products of caspase-3, and the 10-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged cells in which the processing of the full length form of caspase-3 and -6 was evident. While a time course similar to this caspase-3 and -6 activation was evident, hypoxic stress caused the cleavage of lamin A, which was typical of caspase-6 activity. In addition, the stress elicited the release of cytochrome c into the cytosol during apoptosis. Furthermore, we observed that pre-treatment with SB203580, a selective p38 mitogen activated protein kinase inhibitor, attenuated the hypoxia-induced apoptosis. The addition of SB203S80 suppressed caspase-3 and -6-like protease activity by hypoxia up to $50\%$. In contrast, PD98059 had no effect on the hypoxia-induced apoptosis. To confirm the involvement of MAP kinase, JNK/SAPK, ERK, or p38 kinase assay was performed. Although p38 MAPK was activated in response to hypoxic treatment, the other MAPK -JNK/SAPK or ERK- was either only modestly activated or not at all. These results suggest that p38 MAPK is involved in hypoxia-induced apoptosis in MC3T3El osteoblasts.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.