• Title/Summary/Keyword: DESTRUCTIVE TESTING

Search Result 605, Processing Time 0.029 seconds

Prediction model of resistivity and compressive strength of waste LCD glass concrete

  • Wang, Chien-Chih
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.467-475
    • /
    • 2017
  • The purpose of this study is to establish a prediction model for the electrical resistivity ($E_r$) of self-consolidating concrete by using waste LCD (liquid crystal display) glass as part of the fine aggregate and then, to analyze the results obtained from a series of laboratory tests. A hyperbolic function is used to perform nonlinear multivariate regression analysis of the electrical resistivity prediction model, with parameters such as water-binder ratio (w/b), curing age (t) and waste glass content (G). Furthermore, the relationship of compressive strength and electrical resistivity of waste LCD glass concrete is also found by a logarithm function, while compressive strength is evaluated by the electrical resistivity of non-destructive testing (NDT). According to relative regression analysis, the electrical resistivity and compressive strength prediction models are developed, and the results show that a good agreement is obtained using the proposed prediction models. From the comparison between the predicted analysis values and test results, the MAPE value of electrical resistivity is 17.0-18.2% and less than 20%, the MAPE value of compressive strength evaluated by $E_r$ is 5.9-10.6% and nearly less than 10%. Therefore, the prediction models established in this study have good predictive ability for electrical resistivity and compressive strength of waste LCD glass concrete. However, further study is needed in regard to applying the proposed prediction models to other ranges of mixture parameters.

R&D performance measurement model - Quantitative value measurement of technology and Its capitalization - (연구개발투자의 성과측정 모형 - 기술의 정량적 가치추정과 자산화 방안 -)

  • 조현춘;박상덕
    • Proceedings of the Technology Innovation Conference
    • /
    • 1999.12a
    • /
    • pp.159-177
    • /
    • 1999
  • Many companies still struggle with the issue of research and development(R&D) performance measurement, in particular, the nonfinancial performance measurement of R&D with coming of knowledge-based society, Of course, we would not deny the fact that financial measures play the central role in assessing the overall performance of R&D, The aim of this paper is to provide the new model to evaluate the quantitative value of technology (nonfinancial benefits). This new model is based on the technology stock(technology level) acquired in R&D process, That is, we take it for granted that the acquired technology below a certain level(<70% compare to the advanced country) can not be utilized in developing the new products or in proving the manufacturing processes, The evaluation model we create can explains the quantitative relation between the technology stock and the market value considering R&D expenditure to acquire the technology above certain level(>70%) and cost to prevent the technology obsolescence. The value of non-destructive testing technology, which is one of the electric Power technology, is measured quantitatively using our new model as a case study, We also discussed briefly the possibility of capitalization of the measured technology value.

  • PDF

Correlation Between Bulk and Surface Resistivity of Concrete

  • Ghosh, Pratanu;Tran, Quang
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.119-132
    • /
    • 2015
  • Electrical resistivity is an important physical property of portland cement concrete which is directly related to chloride induced corrosion process. This study examined the electrical surface resistivity (SR) and bulk electrical resistivity (BR) of concrete cylinders for various binary and ternary based high-performance concrete (HPC) mixtures from 7 to 161 days. Two different types of instruments were utilized for this investigation and they were 4 point Wenner probe meter for SR and Merlin conductivity tester for bulk resistivity measurements. Chronological development of electrical resistivity as well as correlation between two types of resistivity on several days was established for all concrete mixtures. The ratio of experimental surface resistance to bulk resistance and corresponding resistivity was computed and compared with theoretical values. Results depicted that bulk and SR are well correlated for different groups of HPC mixtures and these mixtures have attained higher range of electrical resistivity for both types of measurements. In addition, this study presents distribution of surface and bulk resistivity in different permeability classes as proposed by Florida Department of Transportation (FDOT) specification from 7 to 161 days. Furthermore, electrical resistivity data for several HPC mixtures and testing procedure provide multiple promising options for long lasting bridge decks against chloride induced corrosion due to its ease of implementation, repeatability, non-destructive nature, and low cost.

Defect detection of wall thinning defect in pipes using Lock-in photo-infrared thermography technique (위상잠금 광-적외선 열화상 기술을 이용한 감육결함이 있는 직관시험편의 결함 검출)

  • Kim, Kyoung-Suk;Jang, Su-Ok;Park, Jong-Hyun;Choi, Tae-Ho;Song, Jae-Geun;Jung, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.317-321
    • /
    • 2008
  • Piping in the Nuclear Power plants (NPP) are mostly consisted of carbon steel pipe. The wall thinning defect is mainly occurred by the affect of the flow accelerated corrosion (FAC) of fluid which flows in carbon steel pipes. This type of defect becomes the cause of damage or destruction of piping. Therefore, it is very important to measure defect which is existed not only on the welding partbut also on the whole field of pipe. Over the years, Infrared thermography (IRT) has been used as a non destructive testing methods of the various kinds of materials. This technique has many merits and applied to the industrial field but has limitation to the materials. Therefore, this method was combined with lock-in technique. So IRT detection resolution has been progressively improved using lock-in technique. In this paper, the quantitative analysis results of the location and the size of wall thinning defect that is artificially processed inside the carbon steel pipe by using IRT are obtained.

  • PDF

Crack Detection of Composite Cylinders under external pressure using the Acoustic Emission (AE 기법을 이용한 외부수압을 받는 복합재 원통의 균열 검출)

  • Park, Jin-Ha;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.25-30
    • /
    • 2011
  • The studies on the non-destructive testing methods of the composite materials are very important for improving their reliability and safety. AE(Acoustic Emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the generation and growth of a crack, plastic deformation, fiber breakage, matrix cleavage or delamination. In this paper, the AE signals of the filament wound composite cylinder and sandwich cylinder during the pressure test were measured and analyzed. The signal characteristics of PVDF sensors were measured, and an AE signal analyzer which had the band-pass filter and L-C resonance filter were designed and fabricated. Also, the crack detection capability of the fabricated AE signal analyzer wes evaluated during the pressure tests of the filament wound composite cylinder and the sandwich cylinder.

Defect Evaluation for Weld Specimen of Bogie Using Infrared Thermography (적외선 서모그래피를 이용한 대차 용접시편의 결함 평가)

  • Kwon, Seok Jin;Seo, Jung Won;Kim, Jae Chul;Jun, Hyun Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.619-625
    • /
    • 2015
  • There is a large interest to find reliable and automatic methods for crack detection and quantification in the railway bogie frame. The non-destructive inspection of railway bogie frame has been performed by ultrasonic and magnetic particle testing in general inspection. The magnetic particle method has been utilized in the defect inspection of the bogie frame but the grinding process is required before inspection and the dust is developed resulting from the processing. The objective of this paper is to apply the inspection method of bogie frame using infra-red thermography. The infra-red thermography system using the excitation of eddy current was performed for the defect evaluation of weld specimen inserted artificial defects. The result shows that the infra-red thermography method can detect the surface and inner defects in weld specimen for bogie frame.

Development of resistance welding technology for producing Ir-192 industrial radiation sources (Ir-192 산업용 방사선원의 생산을 위한 저항용접기술 개발)

  • Han, In-Su;Son, Kwang-Jae;Lee, Jun-Sig;Jang, Kyung-Duk;Park, Ul-Jae
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.288-290
    • /
    • 2007
  • Ir-192 source is one of the most widely used radioisotopes in the field of non-destructive testing applications. To obtain radiation safety it is necessary to take into consideration integrity of welded joint in the production of sealed radiation source. Generally, the quality of a resistance welded joint is strongly influenced by process parameters during the welding process such as current, welding time and applied force. In this study, resistance welding technology and system were developed for sealing of Ir-192 industrial radiation source capsules. In order to evaluate the weld quality in real time, quantitative relationships between process parameters and electrode displacement were also established.

  • PDF

Exploring Reliability of Oriented Strand Board's Tensile and Stiffness Strengths

  • Wang, Y.;Young, T.M.;Guess, F.M.;Leon, R.V.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.111-124
    • /
    • 2007
  • In this paper, we apply insightful statistical reliability tools to manage and seek improvements in the strengths of Oriented Strand Board (OSB). As a part of the OSB manufacturing process, the product undergoes destructive testing at various intervals to determine compliance with customers' specifications. Workers perform these tests on sampled cross sections of the OSB panel to measure the tensile strength, also called internal bond (IB), in pounds per square inches until failure. Additional stiffness strength tests include parallel and perpendicular elasticity indices (EI), which are taken from cross sectional samples of the OSB panel in the parallel and perpendicular directions with respect to the orientation of the wood strands. We explore both graphically and statistically these "pressure-to-failures" of OSB. Also, we briefly comment on reducing sources of variability in the IB and EI of OSB.

  • PDF

Investigating the fatigue failure characteristics of A283 Grade C steel using magnetic flux detection

  • Arifin, A.;Jusoh, W.Z.W.;Abdullah, S.;Jamaluddin, N.;Ariffin, A.K.
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.601-614
    • /
    • 2015
  • The Metal Magnetic Memory (MMM) method is a non-destructive testing method based on an analysis of the self-magnetic leakage field distribution on the surface of a component. It is used for determining the stress concentration zones or any irregularities on the surface or inside the components fabricated from ferrous-based materials. Thus, this paper presents the MMM signal behaviour due to the application of fatigue loading. A series of MMM data measurements were performed to obtain the magnetic leakage signal characteristics at the elastic, pre-crack and crack propagation regions that might be caused by residual stresses when cyclic loadings were applied onto the A283 Grade C steel specimens. It was found that the MMM method was able to detect the defects that occurred in the specimens. In addition, a justification of the Self Magnetic Flux Leakage patterns is discussed for demonstrating the effectiveness of this method in assessing the A283 Grade C steel under cyclic loadings.

Size Tunable Nano Patterns Using Nanosphere Lithography with Ashing and Annealing Effect (나노 구체 리소그라피법에 Ashing과 Annealing 효과를 적용하여 크기조절 가능한 나노패턴의 제조)

  • Lee, Yu-Rim;Alam, Mahbub;Kim, Jin-Yeol;Jung, Woo-Gwang;Kim, Sung-Dai
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.550-554
    • /
    • 2010
  • This work presents a fabrication procedure to make large-area, size-tunable, periodically different shape metal arrays using nanosphere lithography (NSL) combined with ashing and annealing. A polystyrene (PS, 580 ${\mu}m$) monolayer, which was used as a mask, was obtained with a mixed solution of PS in methanol by multi-step spin coating. The mask morphology was changed by oxygen RIE (Reactive Ion Etching) ashing and temperature processing by microwave heating. The Au or Pt deposition resulted in size tunable nano patterns with different morphologies such as hole and dots. These processes allow outstanding control of the size and morphology of the particles. Various sizes of hole patterns were obtained by reducing the size of the PS sphere through the ashing process, and by increasing the size of the PS sphere through annealing treatment, which resulted in tcontrolling the size of the metallic nanoparticles from 30 nm to 230 nm.