• Title/Summary/Keyword: DESTRUCTIVE TESTING

Search Result 602, Processing Time 0.026 seconds

Evaluation of Non Destructive Inspection Interval for Running Safety of Railway Axle (철도차량 안전성을 위한 주행 차축의 비파괴 검사주기 평가)

  • Kwon, Seok Jin;Lee, Dong Hyung;Seo, Jung Won;Kim, Jae Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.777-782
    • /
    • 2014
  • Usually, railway axles are designed for infinite life based on endurance limit of the material and the axle is not fractured immediately when a surface crack initiated. The railway axles have been inspected regularly by NDT such as ultrasonic testing, magnetic testing and eddy current testing and so on. Because the axle failure is profoundly influenced by the probability of missing a fatigue crack during an NDT inspection, it is necessary to evaluate the Non Destructive Interval of railway axle. In the present paper, the Non Destructive Interval of railway axle based on fracture mechanics and finite element analysis was investigated. It was shown that the Non Destructive Interval of railway axle can be evaluated using fracture mechanics approach and extended using NDT which a crack can detect clearly.

Detection of Flaws in Air Deck using Non-Destructive Testing (비파괴 검사를 이용한 항공 갑판의 결함 검출)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1865-1870
    • /
    • 2011
  • In this paper, we propose an effective method that automatically detects flaws in air deck by using non-destructive testing. First, Gamma correlation transform, 7 ${\times}$ 7 and 13 ${\times}$ 13 Sobel mask apply to the image of air deck acquired non-destructive testing in order to detect the edge of the image. Second, the edge detection area is smoothed and corrected by mean binarization method. Finally, the region of flaws in air deck is detected by a labeling method after removing the noise by the erosion and the dilation operation. In experimental results, we showed that the proposed detection method is effective in air deck.

A Design and Experiment of Pressure and Shape Adaptive Mechanism for Detection of Defects in Wind Power Blade (풍력 발전용 블레이드 접합부의 결함 검출을 위한 일정가압 메커니즘 설계 및 실험)

  • Lim, Sun;Lim, Seung Hwan;Jeong, Ye Chan;Chi, Su Chung;Nam, Mun Ho
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.224-235
    • /
    • 2017
  • Purpose: Reliability is the most important factor to detect defects as wind turbines are deployed in large blades. The methods of detecting defects are various, such as non-destructive inspection and thermal imaging inspection. We propose the phased array ultrasonic testing method of non-destructive testing. Methods: We propose the active pressure mechanism for wind power blade. The phase array ultrasonic inspection method is used for fault detection inner blade surface. Controlled pressure of mechanism with respect to z-axis is important for guarantee the result of phase array ultrasonic inspection. The model based control and proposed mechanism are utilized for overall system stability and effectiveness of system. Result: The result of proposed pressure mechanism B is more stable than A. Convergence speed is also faster than A. Conclusion: We confirmed the performance of the proposed constant pressure mechanism through experiments. Non-destructive testing was applied to the specimen to confirm the reliability of detecting defects.

An Application of a Magnetic Camera for an NDT System for Aging Aircraft

  • Kim, Jung-Min;Jun, Jong-Woo;Lee, Jae-Sun;Lee, Jin-Yi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.212-224
    • /
    • 2010
  • The usefulness of the magnetic camera for non-destructive testing of aging aircraft is discussed in this paper. The magnetic camera can be used f magnetic particle testing(MT), magnetic flux leakage testing(MFLT), eddy current testing(ECT) and penetration testing(PT). It measures the distribution of a magnetic field and visualizes the magnetic pattern. Near and far side cracks, fatigue, thickness degradation, and cracks under rivets have been detected. The possibility of quantitative evaluation was also examined. Using indirect experiments, we verified the detection ability of the sensor for cracks in titanium and advanced composite materials.

Research on non-destructive testing technology for existing bridge pile foundations

  • Zhang, Xue-feng;Ni, Ying-sheng;Song, Chunxia;Xu, Dong
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.43-58
    • /
    • 2020
  • Pile foundations of existing bridges lie in soil and water environment for long term and endure relatively heavy vertical loads, thus prone to damages, especially after stricken by external forces, such as earthquake, collision, soil heap load and etc., and the piles may be injured to certain degrees as well. There is a relatively complete technical system for quality inspection of new bridge pile foundations without structures on the top. However, there is no mature technical standard in the engineering community for the non-destructive testing technology specific to the existing bridge pile foundations. The quality of bridge pile foundations has always been a major problem that plagues bridge maintenance. On the basis of many years' experiences in test engineering and theoretical studies, this study developed a new type of detection technology and equipment for the existing bridge piles.

Modeling and Analysis of a Ray Tracing Method for Non-Destructive Testing for Internal Defects (광선추적법을 이용한 비파괴 내부 결함 모델 및 해석)

  • Kim, Teak Gu;Kim, Joohan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • Modeling and analysis using a ray tracing method for internal defects were described. Reflection and refraction of rays on the interface of defects were modeled using the Harvey model and the Lambertian model. The diffraction on the interface of defects affected the incoming signals and it could evaluate any defects in the matter and its signal would be analyzed with the ray tracing simulation. The simulation results were compared with actual detecting signals and the ray tracing model was shown in good agreement with experimental data. This method has a possibility to be used as wave propagation modeling in non-destructive testing.

Finite element modeling of a deteriorated R.C. slab bridge: lessons learned and recommendations

  • Ho, I-Kang;Shahrooz, Bahram M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.259-274
    • /
    • 1998
  • The test results from non-destructive and destructive field testing of a three-span deteriorated reinforced concrete slab bridge are used as a vehicle to examine the reliability of available tools for finite-element analysis of in-situ structures. Issues related to geometric modeling of members and connections, material models, and failure criteria are discussed. The results indicate that current material models and failure criteria are adequate, although lack of inelastic out-of-plane shear response in most nonlinear shell elements is a major shortcoming that needs to be resolved. With proper geometric modeling, it is possible to adequately correlate the measured global, regional, and local responses at all limit states. However, modeling of less understood mechanisms, such as slab-abutment connections, may need to be finalized through a system identification technique. In absence of the experimental data necessary for this purpose, upper and lower bounds of only global responses can be computed reliably. The studies reaffirm that success of finite-element models has to be assessed collectively with reference to all responses and not just a few global measurements.