• Title/Summary/Keyword: DERs

Search Result 26, Processing Time 0.011 seconds

Optimal Positioning Algorithm for Distributed Energy Resources near Ocean Side (해양도시내 분산전원의 최적 설치점 선정)

  • Park, Jeong-Do;Lee, Seong-Hwan;Doe, Geun-Young;Seong, Hyo-Seong;Jang, Nak-Won
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.457-462
    • /
    • 2009
  • In this paper we suggest optimal positioning algorithm for DER(distributed energy resource)s near ocean side by using Newton-Rhapson load flow calculation. By installing DERs within urban area, electric power can be effectively transmitted to each loads without constructing additional large scale power stations and transmission lines. Therefore, DERs have attracted worldwide attention as urban area energy sources. However, there are quite a few studies for estimation of power loss due to DERs' location change within urban area Hence, in this study, an optimal positioning scheme for DERs is proposed in order to minimizing electrical power loss.

SERRATION MECHANISM OF AA5182/POLYPROPYLENE/AA5182 SANDWICH SHEETS

  • Kim, K.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.485-492
    • /
    • 2006
  • The AA5182/polypropylene/AA5182(AA/PP/AA) sandwich sheets have been developed for application to automotive body panels in future lightweight vehicles with significant weight reduction. It has been reported that the AA5182 aluminum sheet shows $L\"{u}ders$ band because of dissolved Mg atoms that cause fabrication process problem, especially surface roughness. The examination of serration behavior has been made after the tensile deformation of the AA/PP/AA sandwich sheets as well as that of the AA5182 aluminum skins at room and elevated temperatures. All sandwich sheets and the AA5182 aluminum skin showed serration behavior on their flow curves. However, the magnitude of serration was significantly diminished in the sandwich sheet with high volume fraction of the polypropylene core. According to the results of the analysis of the surface roughness following the tensile test, $L\"{u}ders$ band depth of the sandwich sheet evidently showed lower than that of the AA5182 aluminum skin. The strain rate sensitivity, m-value, of the AA5182 aluminum skin was -0.006. By attaching these skins to the polypropylene core, which has relatively large positive value of 0.050, m-value of the sandwich sheets changed to the positive value. The serration mechanism of the sandwich sheets was quantitatively investigated in the point of the effect on polypropylene thickness variation, that on the strain rate sensitivity and that on the localized stress state.

Complementary Power Control of the Bipolar-type Low Voltage DC Distribution System

  • Byeon, Gilsung;Hwang, Chul-Sang;Jeon, Jin-Hong;Kim, Seul-Ki;Kim, Jong-Yul;Kim, Kisuk;Ko, Bokyung;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.786-794
    • /
    • 2015
  • In this paper, a new power control strategy for the bipolar-type low voltage direct current (LVDC) distribution system is being proposed. The dc distribution system is considered as an innovative system according to the increase of dc loads and dc output type distribution energy resources (DERs) such as photovoltaic (PV) systems and energy storage systems (ESS). Since the dc distribution system has many advantages such as feasible connection of DERs, reduction of conversion losses between dc output sources and loads, no reactive power issues, it is very suitable solution for new type buildings and residences interfaced with DERs and ESSs. In the bipolar-type, if it has each grid-interfaced converter, both sides (upper, lower-side) can be operated individually or collectively. A complementary power control strategy using two ESSs in both sides for effective and reliable operation is proposed in this paper. Detailed power control methods of the host controller and local controllers are described. To verify the performances of the proposed control strategy, simulation analysis using PSCAD/EMTDC is being performed where the results show that the proposed strategy provides efficient operations and can be applied to the bipolar-type dc distribution system.

Pastic Strain Ratio and Texture Evolution of Aluminum/Polypropylene/Aluminum Sandwich Sheets (알루미늄 5182-폴리프로필렌 샌드위치 판재의 소성변형비 및 집합조직의 발달)

  • Kim, Kee-Joo;Jeong, Hyo-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.57-66
    • /
    • 2006
  • AA5182-polypropylene sandwich sheet was manufactured, and the mechanical properties evaluation was executed in order to identify $L{\ddot{u}}ders$ band that causes fabrication process problem and especially surface roughness. To identify formability, deformation behavior, plastic strain ratio (R-value) and pole figure were measured, and texture analysis was performed. In the case of sandwich sheet, the unstable deformation behavior has decreased. As well, for sandwich sheet, A1 skin could manage the most of load, and the elongation has improved about 45% more than that of A1 skin. The plastic strain ratio of A1 skin and sandwich panel, which indicates serration behavior, was obtained from instantaneous plastic strain ratio evaluation. Also, the planar anisotropy of sandwich sheet has decreased more than that of A1 skin. According to these results, the sandwich sheet produced lightening effect and could control unstable deformation characteristic, that is, surface roughness caused by $L{\ddot{u}}ders$ band. Furthermore, it was proved that the texture control of the rolling attachment of A1 skin is necessary to improve the formability of the sandwich panel.

The Economic Evaluation based Design Program for the Off-Grid Microgrid (경제성평가 기반의 독립형 마이크로그리드 설계 프로그램 개발)

  • Lee, Hak-Ju;Chae, Woo-Kyu;Jung, Won-Wook;Kim, Ju-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.90-98
    • /
    • 2010
  • Microgrid is a small-scale power system composed of distributed generators, energy storage system and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents optimal design procedures for remote microgrid. The design program is based on the economic evaluations including the feasibility study module, optimal combination and allocation of DERs, power network design and the reduction of the GHG emmission. This program which is suggested in this paper shows good performance as a tool of remote microgrid design.

Test bed for Advanced function of Smart Inverter and Results Based on Real-Time Simulation Platform (실시간 시뮬레이터 기반의 스마트 인버터 제어기능 시험 환경 구축 및 시험 결과)

  • Sim, Junbo;Ban, Minho;Lim, Hyeonok;Cho, Seong-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.107-114
    • /
    • 2021
  • High penetration of renewable energy generators causes unnecessary investment for power system facilities. Especially with Korean government policies such as Renewable Energy 3020 and Inter-connection support Responsibility of KEPCO for 1 MW DERs, the applications of DER interconnection in distribution system have been increasing. To save the investment, smart control functions for DERs are required and the test bed for the inverters which have not been prepared are necessary to insure DER inter-connection stability. For this, test bed for advanced functions of a smart inverter has been constructed and the tests for necessary functions have been implemented. In this paper, the test bed and environment as well as specifications are introduced and the test results for the validation of the functions are analyzed.

Optimal Sizing Method of Distributed Energy Resources for a Stand-alone Microgrid by using Reliability-based Genetic Algorithm (신뢰도 기반의 유전자알고리즘을 활용한 독립형 마이크로그리드 내 분산형전원 최적용량 산정 방법)

  • Baek, Ja-Hyun;Han, Soo-Kyung;Kim, Dae-Sik;Han, Dong-Hwa;Lee, Hansang;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.757-764
    • /
    • 2017
  • As the reduction of greenhouse gases(GHGs) emission has become a global issue, the microgrid markets are growing rapidly. With the sudden changes in the market, Korean government suggested a new business model called 'Self-Sufficient Energy Islands'. Its main concern is a stand-alone microgrid composed of Distributed Energy Resources(DERs) such as Renewable Energy Sources(RESs), Energy Storage System(ESS) and Fuel Cell, in order to minimize the emission of GHGs. According to these trend, this paper is written to propose an optimal sizing method of DERs in a stand-alone microgrid by using Genetic Algorithm(GA), one of the representative stochastic methods. It is to minimize the net present cost with the variables, size of RESs and ESS. In the process for optimization, the sunless days are considered as additional constraints. Through the case study analysis, the size of DERs installed in a microgrid system has been computed using the proposed method in MATLAB. And the result of MATLAB is compared with that of HOMER(Hybrid Optimization of Multiple Energy Resources), a well-known energy modeling software.

Operation System Design of Distribution Feeder with Distributed Energy Resources (분산전원이 연계된 배전선로의 운영시스템 설계)

  • Kim, Seong-Man;Chang, Young-Hak;Kim, Kyeong-Hun;Kim, Sul-Ki;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1183-1194
    • /
    • 2021
  • Traditionally, electric power systems have been known as the centralized structures, which is organized into placing customers at the end of the supply chain. However, recent decades have witnessed the emergence of distributed energy resources(:DERs) such as rooftop solar, farming PV system, small wind turbines, battery energy storage systems and smart home appliances. With the emergence of distributed energy resources, the role of distributed system operators(:DSOs) will expand. The increasing penetration of DERs could lead to a less predictable and reverse flow of power in the system, which can affect the traditional planning and operation of distribution and transmission networks. This raises the need for a change in the role of the DSOs that have conventionally planned, maintained and managed networks and supply outages. The objective of this research is to designed the future distribution operation system with multi-DERs and the proposed distribution system model is implemented by hardware-in-the-loop simulation(HILS). The test results show the normal operation domain and reduction of distribution line loss.

A New Approach for Corrective and Preventive Control to Unsolvable Case in Power Networks having DERs

  • Dinh, Hung Nguyen;Nguyen, Minh Y.;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.411-420
    • /
    • 2013
  • Recently, Korean system operating conditions have gradually approached an upper limit. When a contingency occurs, the power system may have no solutions. Different from the cases of bad initial guesses or the solutions are too close to the solvability boundary in which numerical methods can be applied, for unsolvable cases, the only way to restore solvability would be structure modifications. In this paper, a new approach for corrective and preventive control to such cases is proposed in two steps: (i) finding any solution regardless its feasibility; (ii) for the infeasible solution, make it feasible with additional modifications at load buses having Distributed Energy Resources. The test case built based on the peak load profile of 2008 by KEPCO including 1336 buses is analyzed. Since reactive power compensation is optimized to restore solvability, all demands are met, therefore no blackouts happen. The proposed method was integrated in the LP program designed by power21 Corporation.

Microgrid energy scheduling with demand response

  • Azimian, Mahdi;Amir, Vahid;Haddadipour, Shapour
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.85-100
    • /
    • 2020
  • Distributed energy resources (DERs) are essential for coping with growing multiple energy demands. A microgrid (MG) is a small-scale version of the power system which makes possible the integration of DERs as well as achieving maximum demand-side management utilization. Hence, this study focuses on the analysis of optimal power dispatch considering economic aspects in a multi-carrier microgrid (MCMG) with price-responsive loads. This paper proposes a novel time-based demand-side management in order to reshape the load curve, as well as preventing the excessive use of energy in peak hours. In conventional studies, energy consumption is optimized from the perspective of each infrastructure user without considering the interactions. Here, the interaction of energy system infrastructures is considered in the presence of energy storage systems (ESSs), small-scale energy resources (SSERs), and responsive loads. Simulations are performed using GAMS (General Algebraic modeling system) to model MCMG, which are connected to the electricity, natural gas, and district heat networks for supplying multiple energy demands. Results show that the simultaneous operation of various energy carriers, as well as utilization of price-responsive loads, lead to better MCMG performance and decrease operating costs for smart distribution grids. This model is examined on a typical MCMG, and the effectiveness of the proposed model is proven.