• Title/Summary/Keyword: DEM data processing

Search Result 102, Processing Time 0.029 seconds

A Study of Data Structure for Efficient Storing of 3D Point Cloud Data (3차원 점군자료의 효율적 저장을 위한 자료구조 연구)

  • Jang, Young-Woon;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • Recently, 3D-reconstruction for geographic information and study of geospatial information is progressing in various fields through national policy such as R&D business and pilot project. LiDAR system has a advantage of acquisition the 3D information data easily and densely so that is used in many different fields. Considering to characterist of the point data formed with 3D, it need a high specification CPU because it requires a number of processing operation for 2D form expressed by monitor. In contrast, 2D grid structure, like DEM, has a advantage on costs because of simple structure and processing speed. Therefore, purpose of this study is to solve the problem of requirement of more storage space, when LiDAR data stored in forms of 3D is used for 3D-geographic and 3D-buliding representation. Additionally, This study reconstitutes 2D-gird data to supply the representation data of 3D-geographic and presents the storage method which is available for detailed representation applying tree-structure and reduces the storage space.

Spatial Interpolation and Assimilation Methods for Satellite and Ground Meteorological Data in Vietnam

  • Do, Khac Phong;Nguyen, Ba Tung;Nguyen, Xuan Thanh;Bui, Quang Hung;Tran, Nguyen Le;Nguyen, Thi Nhat Thanh;Vuong, Van Quynh;Nguyen, Huy Lai;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.556-572
    • /
    • 2015
  • This paper presents the applications of spatial interpolation and assimilation methods for satellite and ground meteorological data, including temperature, relative humidity, and precipitation in regions of Vietnam. In this work, Universal Kriging is used for spatially interpolating ground data and its interpolated results are assimilated with corresponding satellite data to anticipate better gridded data. The input meteorological data was collected from 98 ground weather stations located all over Vietnam; whereas, the satellite data consists of the MODIS Atmospheric Profiles product (MOD07), the ASTER Global Digital Elevation Map (ASTER DEM), and the Tropical Rainfall Measuring Mission (TRMM) in six years. The outputs are gridded fields of temperature, relative humidity, and precipitation. The empirical results were evaluated by using the Root mean square error (RMSE) and the mean percent error (MPE), which illustrate that Universal Kriging interpolation obtains higher accuracy than other forms of Kriging; whereas, the assimilation for precipitation gradually reduces RMSE and significantly MPE. It also reveals that the accuracy of temperature and humidity when employing assimilation that is not significantly improved because of low MODIS retrieval due to cloud contamination.

Development of the Visualization Prototype of Radar Rainfall Data Using the Unity 3D Engine (Unity 3D 엔진을 활용한 강우레이더 자료 시각화 프로토타입 개발)

  • CHOI, Hyeoung-Wook;KANG, Soo-Myung;KIM, Kyung-Jun;KIM, Dong-Young;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.131-144
    • /
    • 2015
  • This research proposes a prototype for visualizing radar rainfall data using the unity 3D engine. The mashup of radar data with topographic information is necessary for the 3D visualization of the radar data with high quality. However, the mashup of a huge amount of radar data and topographic data causes the overload of data processing and low quality of the visualization results. This research utilized the Unitiy 3D engine, a widely used engine in the game industry, for visualizing the 3D topographic data such as the satellite imagery/the DEM(Digital Elevation Model) and radar rainfall data. The satellite image segmentation technique and the image texture layer mashup technique are employed to construct the 3D visualization system prototype based on the topographic information. The developed protype will be applied to the disaster-prevention works by providing the radar rainfall data with the 3D visualization based on the topographic information.

Implementation of a SAR GeoCoding Module based on component

  • Kim, Kwang-Yong;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.337-339
    • /
    • 2003
  • This paper describes the SAR geocoding module, which is the sub-module of a IRHIS ('Integrated RS s/w for High resolution satellite ImageS'): package of 'Development of High Resolution Satellite Image Processing Technique' project in Electronics and Telecommunications Research Institute (ETRI). The function of this module is following. 1) Orbit Type : ERS1/ERS2, RADARSAT 2) Data Format : SAR CEOS Format(Single Look Complex) 3) Function: - Geocode : Generate a map projected SAR image based on only orbit information - Orthorectify: Generate a rigorous geocoded SAR image with a DEM information In this paper, we briefly describe the algorithm that is adopted to the functions, and component architecture.

  • PDF

A Prototype Implementation for 3D Animated Anaglyph Rendering of Multi-typed Urban Features using Standard OpenGL API

  • Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.401-408
    • /
    • 2007
  • Animated anaglyph is the most cost-effective method for 3D stereo visualization of virtual or actual 3D geo-based data model. Unlike 3D anaglyph scene generation using paired epipolar images, the main data sets of this study is the multi-typed 3D feature model containing 3D shaped objects, DEM and satellite imagery. For this purpose, a prototype implementation for 3D animated anaglyph using OpenGL API is carried out, and virtual 3D feature modeling is performed to demonstrate the applicability of this anaglyph approach. Although 3D features are not real objects in this stage, these can be substituted with actual 3D feature model with full texture images along all facades. Currently, it is regarded as the special viewing effect within 3D GIS application domains, because just stereo 3D viewing is a part of lots of GIS functionalities or remote sensing image processing modules. Animated anaglyph process can be linked with real-time manipulation process of 3D feature model and its database attributes in real world problem. As well, this approach of feature-based 3D animated anaglyph scheme is a bridging technology to further image-based 3D animated anaglyph rendering system, portable mobile 3D stereo viewing system or auto-stereo viewing system without glasses for multi-viewers.

Application of the Developed Pre- and Post-Processing System to Yongdamdam Watershed using PRMS Hydrological Model (수문학적 유역특성자료 자동화 추출 및 분석시스템 적용 (II) -PRMS 모형을 이용한 용담댐 유역을 대상으로-)

  • Kwon, Hyung-Joong;Hwang, Eui-Ho;Lee, Geun-Sang;Yu, Byeong-Hyeok;Koh, Deuk-Koo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2008
  • The objective of this study is to evaluate the applicability of extracted PRMS input parameters by KGIS-Hydrology over Yongdam-Dam watershed. KGIS-Hydrology is a system for automatic extraction and analysis of watershed characteristic data. Input parameters of PRMS were generated from GIS data (DEM, soil, forest type, etc.) using KGIS-Hydrology. Multi-temporal meteorological data from Jangsu station of KMA (Korea Meteorological Administration) were used for all simulation periods. Input parameters of PRMS were optimized using observed runoff data of Yongdam-Dam station (1966-2001) and validated using observed runoff data of Yongdam-Dam station (2002-2006, Yongdam-Dam watershed). The results showed that the simulated flows were much closed to the observed flows of Yongdam-Dam (2002-2006) and Donghyang (2001-2004) station by 0.49~0.83 and 0.57~0.75 model efficiencies, respectively.

  • PDF

Development of a Raster-based Two-dimensional Flood Inundation Model (래스터 기반의 2차원 홍수범람 모형의 개발)

  • Lee, Gi-Ha;Lee, Seung-Soo;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.155-163
    • /
    • 2010
  • The past researches on flood inundation simulation mainly focused on development of numerical models based on unstructured mesh networks to improve model performances. However, despite the accurate simulation results, such models are not suitable for real-time flood inundation forecasting due to a huge computational burden in terms of geographic data processing. In addition, even though various types of vector and raster data are available to be compatible with flood inundation models for post-processes such as flood hazard mapping and flood inundation risk analysis, the unstructured mesh-based models are not effective to fully use such information due to data incommensurability. Therefore, this study aims to develop a raster-based two-dimensional inundation model; it guarantees computational efficiency because of direct application of DEM for flood inundation modeling and also has a good compatibility with various types of raster data, compared to a commercial model such as FLUMEN. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results showed a good agreement with the field-surveyed inundation area and were also very similar with results from the FLUMEN. Moreover, the model provided physically-acceptable velocity vectors with respect to inundating and returning flows due to the difference of water level between channel and lowland.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.

Application Possibility of Control Points Extracted from Ortho Images and DTED Level 2 for High Resolution Satellite Sensor Modeling (정사영상과 DTED Level 2 자료에서 자동 추출한 지상기준점의 IKONOS 위성영상 모델링 적용 가능성 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2007
  • Ortho images and Digital Elevation Model (DEM) have been applied in various fields. It is necessary to acquire Ground Control Points (GCPs) for processing high resolution satellite images. However surveying GCPs require many time and expense. This study was performed to investigate whether GCPs automatically extracted from ortho images and DTED Level 2 can be applied to sensor modeling for high resolution satellite images. We analyzed the performance of the sensor model established by GCPs extracted automatically. We acquired GCPs by matching satellite image against ortho images. We included the height acquired from DTED Level 2 data in these GCPs. The spatial resolution of the DTED Level 2 data is about 30m. Absolution accuracy of this data is below 18m above MSL. The spatial resolution of ortho image is 1m. We established sensor model from IKONOS images using GCPs extracted automatically and generated DEMs from the images. The accuracy of sensor modeling is about $4{\sim}5$ pixel. We also established sensor models using GCPs acquired based on GPS surveying and generated DEMs. Two DEMs were similar. The RMSE of height from the DEM by automatic GCPs and DTED Level 2 is about 9 m. So we think that GCPs by DTED Level 2 and ortho image can use for IKONOS sensor modeling.

  • PDF

Application of the Fuzzy Method to Improve GIS Geomorphological Method of Predicting Flood Vulnerable Area

  • Kim Su Jeong;Yom Jae-Hong;Lee Dong-Cheon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.264-267
    • /
    • 2004
  • In identifying flood vulnerable areas, three methods are generally deployed: the geomorphology method which is based on topographic features; the past evidence method based on observed data of past actual floods; and, prediction of flood areas through hydrologic models. This study aims to improve the prediction model of the geomorphology method through the application of fuzzy method in GIS modeling. The generally used GIS method of superimposing thematic map layers assumes crisp boundaries of the layers, which results in either risk-averse solutions or risk-taking solutions. The introduction of fuzzy concepts to processing of evaluation criteria (DEM, slope, aspect) solves this problem. As the result of applying the fuzzy method to a test site in the west Nak-Dong river, similar flood vulnerable areas were predicted as when using the conventional Boolean criteria. The resulting map, however, showed varying degree of uncertainty of flooding in these areas. This extra information is deemed to be valuable in taking phased actions during flood response, leading to a more effective and timely decision-making.

  • PDF