• 제목/요약/키워드: DEM Simulation

검색결과 272건 처리시간 0.032초

The Effects of DEM Resolution on Hydrological Simulation in BASINS-HSPF Modeling

  • Jeon, Ji-Hong;Yoon, Chun-Gyung
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.453-456
    • /
    • 2002
  • In this study, the effect of DEM resolution (15m, 30m, 50m, 70m, 100m, 200m, 300m) on the hydrological simulation was examined using BASINS (Better Assessment Science Integrating point and Nonpoint Source) for Heukcheon watershed (303.3km2) data from 1998 to 1999. Generally, as the cell size of DEM increased, topographical changes were observed as the original range of elevation decreased. The processing time of watershed delineation and river network needed more time and effort on smaller cell size of DEM. The larger DEM demonstrated had some errors in the junction of river network which might effects on the simulation of water quantity and quality. The area weighted average watershed slope became lower but the length weighted average channel slope became higher as the DEM size increased. DEM resolution affected substantially on the topographical parameter but less on the hydrological simulation. Considering processing time and accuracy on hydrological simulation DEM mesh size of 100m is recommended for this watershed.

  • PDF

Effects of DEM Resolution on Hydrological Simulation in, BASINS-BSPF Modeling

  • Jeon, Ji-Hong;Ham, Jong-Hwa;Chun G. Yoon;Kim, Seong-Joon
    • 한국농공학회지
    • /
    • 제44권7호
    • /
    • pp.25-35
    • /
    • 2002
  • In this study, the effect of DEM (Digital Elevation Model) resolution (15m, 30m, 50m, 70m, 100m, 200m, 300m) on the hydrological simulation was examined using the BASINS (Better Assessment Science Integrating point and Nonpoint Source) for the Heukcheon watershed (303.3 ㎢) data from 1998 to 1999. Generally, as the cell size of DEM increased, topographical changes were observed as the original range of elevation decreased. The processing time of watershed delineation and river network needed more time and effort on smaller cell size of DEM. The larger DEM demonstrated had some errors in the junction of river network which might affect on the simulation of water quantity and quality. The area weighted average watershed slope became milder but the length weighted average channel slope became steeper as the DEM size increased. DEM resolution affected substantially on the topographical parameter but less on the hydrological simulation. Considering processing time and accuracy on hydrological simulation, DEM grid size of 100m is recommended for this range of watershed size.

등가 구형입자를 이용한 DEM에서의 골재 슬럼프 실험 모사 (Simulation of Aggregate Slump Test Using Equivalent Sphere Particle in DEM)

  • 윤태영;안상혁;남정희;유평준
    • 한국도로학회논문집
    • /
    • 제15권5호
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES: Simulation of aggregate slump test using equivalent sphere particle in DEM and its validity evaluation against lab aggregate slump test METHODS : In this research, aggregate slump tests are performed and compared with DEM simulation. To utilize spheric particles in YADE, equivalent sphere diameter concept is applied. As verification measures, the volume in slump cone filled with aggregate is used and it is compared with volume in slump cone filled with equivalent sphere particle. Slump height and diameter are also used to evaluate the suggested numerical method with equivalent concept RESULTS : Simulation test results show good agrement with lab test results in terms of loose packing volume, height and diameter of slumped particle clump. CONCLUSIONS : It is concluded that numerical simulation using DEM is applicable to evaluate the effect of aggregate morphological property in loose packing and optimum gradation determination based on the aggregate slump test simulation result.

대기유동장 수치모의 시 지형해상도의 영향 (Influence of Topography Resolution on Atmospheric Flow Simulation)

  • 우상우;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.455-457
    • /
    • 2009
  • The purposes of this study are to consider the influence of topography resolution on atmospheric flow simulation and to suggest a method of atmospheric flow simulation using a low-resolution DEM. Simulations using a low-resolution DEM has more critical error at near surface than simulations using high-resolution DEM because it is ignored the small curve topography of high-resolution DEM. Therefore when we convert the height differences between low-resolution DEM and high-resolution DEM into the topography roughness, we can be able to reduce the error on atmospheric flow simulations.

  • PDF

볼 밀의 분쇄장에서 DEM 시뮬레이션을 통한 마찰계수 영향 (Effect of Friction Coefficient from DEM Simulation in Grinding Zone of the Ball Mill)

  • 자갈사이항 바트체첵;보르 암갈란;오란치멕 쿨란;이재현;최희규
    • 한국재료학회지
    • /
    • 제31권5호
    • /
    • pp.286-295
    • /
    • 2021
  • This study attempts to find optimal conditions of the friction coefficient using a discrete element method (DEM) simulation with various friction coefficient conditions and three different grinding media with various ball sizes in a traditional ball mill (TBM). Using ball motion of the DEM simulation are obtained using the optimal friction coefficient compared with actual motion; photographs are taken by the digital camera and the snapshot images are analyzed. In the simulation, the rotation speed of the mill, the materials and velocity of the grinding media, and the friction coefficient between the balls and the wall of the pot are fixed as the actual experimental conditions. We observe the velocity according to the friction coefficient from the DEM simulation. The friction coefficient is found to increase with the velocity. Milling experiments using a traditional ball mill with the same experimental conditions as those of the DEM simulation are conducted to verify the simulated results. In addition, particle morphology change of copper powder is investigated and analyzed using scanning electron microscopy (SEM) for the milling experiment.

LiDAR 자료를 이용한 홍수 시뮬레이션에 관한 연구 (The Study of Flood Simulations using LiDAR Data)

  • 심정민;이석배
    • 대한공간정보학회지
    • /
    • 제14권4호통권38호
    • /
    • pp.53-60
    • /
    • 2006
  • 본 연구는 LiDAR 측량 데이터를 이용하여 홍수피해 지역을 예측하고자 한 것으로, 이를 위해 고정밀 DEM 데이터를 이용하여 홍수범람도를 제작하였다. 울산시 태화강유역을 연구대상 지역으로 선정하여 LiDAR 데이터와 수치지도를 이용하여 각각 DEM을 작성하였고, 홍수량과 홍수위 결정에 있어서는 HEC 모델 프로그램과 MIKE 프로그램을 이용하여 홍수 시뮬레이션을 실시하였다. 축척1/5000 수치지도를 이용하여 제작한 DEM과 LiDAR 데이터를 이용한 DEM을 이용하여 동일조건에서 홍수 시뮬레이션을 적용한 결과 상당한 차이가 발생함에 따라 홍수 시뮬레이션은 고정밀 DEM 데이터로 작성된 데이터를 적용하는 것이 바람직하다는 것을 확인할 수 있었다. 홍수지도를 작성하기 위해서는 표고정밀도가 매우 중요한 요소이나, LiDAR 데이터를 이용하기 위하여 모든 지역의 하천지역에 대하여 LiDAR측량을 하는 것은 비경제적이므로 홍수 시뮬레이션이 필요한 중요한 시가화 지역에 대하여 우선적으로 LiDAR 데이터를 적용하여 제작하는 것이 필요하다. 홍수시뮬레이션의 기대효과로는 강우량에 따른 홍수피해지역을 사전에 예측하여 대책을 수립함으로써 재해예방 및 복구예산 절감 등의 효과가 있을 것으로 판단된다.

  • PDF

지구통계학적 시뮬레이션을 이용한 수륙경계선 기반 간석지 DEM의 오차 분석 및 확률론적 침수 취약성 추정 (Error Analysis of Waterline-based DEM in Tidal Flats and Probabilistic Flood Vulnerability Assessment using Geostatistical Simulation)

  • 김예슬;박노욱;장동호;유희영
    • 한국지형학회지
    • /
    • 제20권4호
    • /
    • pp.85-99
    • /
    • 2013
  • 이 연구의 목적은 다중 시기 원격탐사 자료로부터 추출한 수륙경계선을 이용하여 제작된 간석지 수치표고모델(DEM)에 포함된 오차의 공간 분포 분석 및 침수 취약성 추정에 있다. 오차의 전역적인 통계값만을 제시했던 기존 연구와 달리, 이 연구에서는 지구통계학적 시뮬레이션을 이용하여 확률론적 관점에서 오차의 공간 분포를 정량적으로 해석하였다. 바람아래 간석지를 대상으로 2010년대 다중 시기 Landsat 자료로부터 추출된 수륙경계선과 보정 조위값을 이용하여 초기 DEM을 생성하였다. 현장 고도 측정 자료와 비교하였을 때, 생성된 DEM은 대체로 실제 고도를 저추정하는 것으로 나타났으며, 지역적인 차이가 나타났다. 이후 오차의 공간 자기상관성 정보를 기반으로 순차적 가우시안 시뮬레이션을 적용하여 다량의 대안적 오차 공간 분포도를 작성하였다. 이 오차 공간 분포도를 이용하여 오차가 보정된 대안적 DEM을 생성한 후에, IPCC SERS 해수면 상승 시나리오에 따른 침수 취약성의 확률 분포도를 제작하였다. 지구통계학적 시뮬레이션 기반 오차분석 방법론은 오차 추정의 불확실성 및 오차 전파 문제를 확률론적으로 표현할 수 있다. 따라서 이 연구에서 적용한 오차 분석 방법론은 수륙경계선 기반 간석지 DEM의 오차 추정뿐만 아니라, 다양한 분야의 주제도에 포함된 오차의 확률론적 평가에 유용하게 사용될 수 있을 것으로 기대된다.

골재의 동적 거동 모사를 위한 DEM 입력변수의 결정 연구 (Determination of DEM Input Parameters for Dynamic Behavior Simulation of Aggregates)

  • 윤태영;유평준;김연복
    • 한국도로학회논문집
    • /
    • 제16권1호
    • /
    • pp.21-30
    • /
    • 2014
  • PURPOSES : Evaluation of input parameters determination procedure for dynamic analysis of aggregates in DEM. METHODS : In this research, the aggregate slump test and angularity test were performed as fundamental laboratory tests to determine input parameters of spherical particles in DEM. The heights spreads, weights of the simple tests were measured and used to calibrate rolling and static friction coefficients of particles. RESULTS : The DEM simulations with calibrated parameters showed good agreement with the laboratory test results for given dynamic condition. CONCLUSIONS : It is concluded that the employed calibration method can be applicable to determine rolling friction coefficient of DEM simulation for given dynamic conditions. However, further research is necessary to connect the result to the behavior of aggregate in packing and mixing process and to refine static friction coefficient.

Numerical simulation of concrete abrasion induced by unbreakable ice floes

  • Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.59-69
    • /
    • 2019
  • This paper focuses on the numerical simulation of ice abrasion induced by unbreakable ice floe. Under the assumption that unbreakable floes behave as rigid body, the Discrete Element Method (DEM) was applied to simulate the interaction between a fixed structure and ice floes. DEM is a numerical technique which is eligible for computing the motion and effect of a large number of particles. In DEM simulation, individual ice floe was treated as single rigid element which interacts with each other following the given interaction rules. Interactions between the ice floes and structure were defined by soft contact and viscous Coulomb friction laws. To derive the details of the interactions in terms of interaction parameters, the Finite Element Method (FEM) was employed. An abrasion process between a structure and an ice floe was simulated by FEM, and the parameters in DEM such as contact stiffness, contact damping coefficient, etc. were calibrated based on the FEM result. Resultantly, contact length and contact path length, which are the most important factors in ice abrasion prediction, were calculated from both DEM and FEM and compared with each other. The results showed good correspondence between the two results, providing superior numerical efficiency of DEM.

Accelerating CFD-DEM simulation of dilute pneumatic conveying with bends

  • Du, Jun;Hu, Guoming;Fang, Ziqiang;Gui, Wenjie
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.84-93
    • /
    • 2015
  • The computational cost is expensive for CFD-DEM simulation, a larger time step and a simplified CFD-DEM model can be used to accelerate the simulation. The relationship between stiffness and overlap in non-linear Hertzian model is examined, and a reasonable time step is determined by a new single particle test. The simplified model is used to simulate dilute pneumatic conveying with different types of bends, and its applicability is verified by compared with the traditional model. They are good agreement in horizontal-vertical case and vertical-horizontal case, and show a significant differences in horizontal-horizontal case. But the key features of particle rope formed in different types of bends can be obtained by both models.