• Title/Summary/Keyword: DEGRADATION

Search Result 13,722, Processing Time 0.035 seconds

Degradation of BTEX and Trichloroethylene by Pseudomonas putida F1 and Burkholderia cepacia G4 (Pseudomonas putida F1과 Burkholderia cepacia G4에 의한 BTEX, trichloroethylene 분해)

  • 이승우;이준명;장덕진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.561-568
    • /
    • 1998
  • Two cometabolic trichloroethylene (TC) degraders, Pseudomonas putida F1 and Burkholderia (Pseudomonas) cepacia G4, were found to catabolize phenol, benzene, toluene, and ethylbenzene as carbon and energy sources. Resting cells of P. putida F1 and B. cepacia G4 grown in the presence of toluene and phenol, respectively, were able to degrade not only benzene, toluene and ethylenzene but also TCE and p-xylene. However, these two strains grown in the absence of toluene or phenol did not degrade TCE and p-xylene. Therefore, it was tentatively concluded that cometabolic degradation of TC and p-xylene was mediated by toluene dioxygenase (P. putida F1) or toluene-2-monooxygenase (B. cepacia G4). Maximal degradation rates of BTEX and TCE by toluene- and phenol-induced resting cells of P. putida F1 and B. cepacia G4 were appeared to be 4-530 nmol/(min$.$mg cell protein) when a single compound was solely served as a target substrate. In case of double substrates, the benzene degradation rate by P. putida F1 in the presence of toluene was decreased up to one seventh of that for the single substrate. TCE degradation rate was also linearly decreased as toluene concentration increased. On the other hand, toluene degradation rate was enhanced by benzene and TCE. For B. cepacia G4, degradation rates of TCE and toluene increased 4 times in the presence of 50 ${\mu}$M phenol. From these results, it was concluded that a degradation rate of a compound in the presence of another cosubstrate(s) could not be predicted by simply generalizing antagonistic or synergistic interactions between substrates.

  • PDF

Degradation Characteristics of Perfluoropolyether Lubricant for Computer Hard Disk (컴퓨터 하드디스크 윤활제로 사용되는 Perfluoropolyether의 분해거동)

  • Lee, Ji-Hye;Chun, Sang-Wook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.278-282
    • /
    • 2007
  • The degradation characteristics of perfluoropolyether (PFPE) for computer hard disk drive have been investigated. Thermal degradation in PFPE started at $170\;^{\circ}C$ and it was completed at $450\;^{\circ}C$. If PFPE was contacted with wear fragment from slider made by $Al_2O_3{\cdot}TiC$, the thermal degradation was accelerated by the catalytic Lewis acid degradation. The Lewis acid degradation mainly took placed in methylene oride(fluoride) chain scission as well as methylene(fluoride) and hydroxy end chain. As a result, the degradation reaction accomplished as early as at $300\;^{\circ}C$. The photo oxidation due to UV exposure on PFPE caused the chain scission in methylene(fluoride), and end chain in PFPE without chain scission in methylene oxide(fluoride) and then the molecular weight of PFPE increased by expected secondary reactions between formed radicals in the photo oxidation.

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

Anaerobic Degradation of cis-1,2-Dichloroethylene by Cultures Enriched from a Landfill Leachate Sediment

  • Chang, Young-Cheol;Jung, KwEon;Yoo, Young-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.366-372
    • /
    • 2003
  • The production of microbiologically enriched cultures that degrade cis- 1,2-dichloroethylene(DCE) under anaerobic conditions was investigated. Among 80 environmental samples, 19 displayed significant degradation of $10{\mu}M$ cis-DCE during 1 month of anaerobic incubation, and one sediment sample collected at a landfill area (Nanji-do, Seoul, Korea) showed the greatest degradation ($94\%$). When this sediment culture was subcultured repeatedly, the ability to degrade cis-DCE gradually decreased. However, under Fe(III)-reducing conditions, cis-DCE degradation by the subculture was found to be maintained effectively. In the Fe(III)-reducing subculture, vinyl chloride (VC) was also degraded at the same extent as cis-DCE No accumulation of VC during the cis-DCE degradation was observed. Thus, Fe(III)-reducing microbes might be involved in the anaerobic degradation of the chlorinated ethenes. However, the subcultures established with Fe(III) could function even in the absence of Fe(III), showing that the degradation of cis-DCE and VC was not directly coupled with the Fe(III) reduction. Consequently, the two series of enrichment cultures could not be obtained that degrade both cis-DCE and VC in the presence or absence of Fe(III). Considering the lack of VC accumulation, both cultures reported herein may involve interesting mechanism(s) for the microbial remediation of environments contaminated with chlorinated ethenes. A number of fermentative reducers (microbes) which are known to reduce Fe(III) during their anaerobic growth are potential candidates involved in cir-DCE degradation in the presence and absence of Fe(III).

Influence of pinching effect of exterior joints on the seismic behavior of RC frames

  • Favvata, Maria J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • Nonlinear dynamic analyses are carried out to investigate the influence of the pinching hysteretic response of the exterior RC beam-column joints on the seismic behavior of multistory RC frame structures. The effect of the pinching on the local and global mechanisms of an 8-storey bare frame and an 8-storey pilotis type frame structure is evaluated. Further, an experimental data bank extracted from literature is used to acquire experimental experience of the range of the real levels that have to be considered for the pinching effect on the hysteretic response of the joints. Thus, three different cases for the hysteretic response of the joints are considered: (a) joints with strength and stiffness degradation characteristics but without pinching effect, (b) joints with strength degradation, stiffness degradation and low pinching effect and (c) joints with strength degradation, stiffness degradation and high pinching effect. For the simulation of the beam-column joints a special-purpose rotational spring element that incorporates the examined hysteretic options developed by the authors and implemented in a well-known nonlinear dynamic analysis program is employed for the analysis of the structural systems. The results of this study indicate that the effect of pinching on the local and global responses of the examined cases is not really significant at early stages of the seismic loading and especially in the cases when strength degradation in the core of exterior joint has occurred. Nevertheless in the cases when strength degradation does not occur in the joints the pinching may increase the demands for ductility and become critical for the columns at the base floor of the frame structures. Finally, as it was expected the ability for energy absorption was reduced due to pinching effect.

Analysis on the electrical degradation characteristics of 2G HTS wires with respect to the electrical breakdown voltages

  • Kang, Jong O;Lee, Onyou;Mo, Young Kyu;Kim, Junil;Bang, Seungmin;Lee, Hongseok;Lee, Jae-Hun;Jang, Cheolyeong;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.37-40
    • /
    • 2015
  • Recently, the electrical insulation design for electrical apparatuses is important to cope with the tendency of high voltage. The degradation characteristics of a superconducting coil due to an electrical breakdown should be considered to design a high voltage superconducting coil. In this paper, the degradation characteristics of 2G high temperature superconducting (HTS) wires are studied with respect to electrical breakdown tests. To analyze the dependency of the degradation characteristics of 2G HTS wires, the electrical breakdown tests are performed with AC(alternating current) and DC(direct current) voltage. All tests are performed by applying various magnitudes of AC and DC breakdown voltages. To verify the degradation characteristics of 2G HTS wires, the tests are performed with various 2G HTS wires with respect to stabilizer materials. The degradation characteristics of 2G HTS wires, such as Ic(critical current) and index number are measured by performing electrical breakdown tests. It is found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it is concluded that the degradation characteristics of 2G HTS wires are affected by the stabilizer material and applied voltages. The cross-sectional view of 2G HTS wires is observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS wires are concerned with hardness and electrical conductivity of stabilizer layers.

Degradation of Rhodamine B in Water using Solid Polymer Electrolyte (SPE) in the Electrolysis Process (고체 고분자 전해질(SPE)을 이용한 전기분해 공정에서 Rhodamine B 분해)

  • Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.137-146
    • /
    • 2014
  • Objectives: Feasibility of electrochemical oxidation of the aqueous non-biodegradable wastewater such as cationic dye Rhodamine B (RhB) has been investigated in an electrochemical reactor with solid polymer electrolyte (SPE). Methods: Nafion 117 cationic exchange membrane as SPE has been used. Anode/Nafion/cathode sandwiches were constructed by sandwiching Nafion between two dimensionally stable anodes (JP202 electrode). Experiments were conducted to examine the effects of applied current (0.5~2.0 A), supporting electrolyte type (0.2 N NaCl, $Na_2SO_4$, and 1.0 g/L NaCl), initial RhB concentration (2.5~30.0 mg/L) on RhB and COD degradation and $UV_{254}$ absorbance. Results: Experimental results showed that an increase of applied current in electrolysis reaction with solid polymer electrolyte has resulted in the increase of RhB and $UV_{254}$ degradation. Performance for RhB degradation by electrolyte type was best with NaCl 0.2 N followed by SPE, and $Na_2SO_4$. However, the decrease of $UV_{254}$ absorbance of RhB was different from RhB degradation: SPE > NaCl 0.2 N > $Na_2SO_4$. RhB and $UV_{254}$ absorbance decreased linearly with time regardless of the initial concentration. The initial RhB and COD degradation in electrolysis reaction using SPE showed a pseudo-first order kinetics and rate constants were 0.0617 ($R^2=0.9843$) and 0.0216 ($R^2=0.9776$), respectively. Conclusions: Degradation of RhB in the electrochemical reactor with SPE can be achieved applying electrochemical oxidation. Supporting electrolyte has no positive effect on the final $UV_{254}$ absorbance and COD degradation. Mineralization of COD may take a relatively longer time than that of the RhB degradation.

MICROBIAL COLONISATION AND DEGRADATION OF SOME FIBROUS CROP RESIDUES IN THE RUMEN OF GOATS

  • Ho, Y.W.;Abdullah, N.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.519-524
    • /
    • 1996
  • An investigation was carried out to study the microbial colonization and degradation of five crop residues, viz., sago waste, rice straw, oil palm trunk shavings, untreated palm press fibre and palm press fibre teated with 3% ammonium hydroxide in the rumen of goats. Colonisation by rumen bacteria and fungi was already established on all the five crop residues 8 h after incubation. However, the extent of colonization varied among the crop residues. Microbial colonization was poor on palm press fibre (treated and untreated) but more extensive on sago waste, oil palm trunk shavings and rice straw. By 24 h, most of the soft-walled tissues in sago waste, rice straw and oil palm trunk shavings were degraded leaving the thick-walled tissues extensively colonized by bacteria and fungi. Degradation on palm press fibre was still limited. At 48 h, the thick-walled tissues of sago waste, oil palm trunk shavings and rice straw showed various degrees of degradation - from small erosion zones to large digested areas. Bacterial growth was similar to that at 24 h but fungal growth was less. On palm press fibre, microbial colonization was more extensive than at 24 h but degradation of the fibres was still limited. Degradation of all the five crop residues at 72 h was somewhat similar to that at 48 h. Overall, microbial colonization and degradation were the most extensive on sago waste, followed by rice straw and oil palm trunk shavings, and the least on palm press fibre (treated and untreated). Dry matter loss of the five crop residues at the various incubation periods also showed the same order of degradation.

Effect of soil environmental conditions on the degradation rate of the fungicide IBP in flooded soils (담수토양중(湛水土壤中)에 있어서 살균제(殺菌劑) IBP의 분해속도(分解速度)에 미치는 각종(各種) 토양환경조건(土壤環境條件)의 영향(影響))

  • Moon, Young-Hee
    • Applied Biological Chemistry
    • /
    • v.33 no.2
    • /
    • pp.133-137
    • /
    • 1990
  • The effects of soil environmental conditions on the rate of degradation of fungicide IBP (Iprobenfos, S-benzyl O, O-diisopropyl phosphorothioate) in the soils under flooded condintions were examined in the laboratory. IBP in soil was degraded more slowly under flooded conditions than under upland conditions. The degradation greatly varied among soils, and the degradation rate was negatively correlated with the content of soil organic matter. Degradation of IBP was influenced by the soil temperature and the amount of IBP applied. The rate of degradation in soil was remarkably inhibited by the amendment of rice straw but not affected by the treatment of mixed-fertilizer, and insecticide fenitrothion and herbicide butachlor. The degradation of IBP was assumed to be due to microorganisms, especially aerobic microbes, as no degradation was observed in sterilized soil.

  • PDF

Influence of NaCl and pH on Hydrolysis of Chicken Myofibrillar Proteins by Leukocyte Lysosomal Proteinases (Leucocyte lysosomal proteinase에 의한 닭의 근섬유(筋纖維) 단백질(蛋白質) 분해(分解)에 미치는 NaCl과 pH의 영향(影響))

  • Shinlee, Seung-Yee;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.569-574
    • /
    • 1990
  • The influence of NaCl and pH on degradation of chicken breast muscle myofibrillar proteins by porcine leukocyte lysosomal proteinases was investigated. The degradation reactions were carried out at $38^{\circ}C$ for 24hours under different conditions. The degradation of myofibrillar proteins by leukocyte lysosomal enzymes at various pH values was limited to partial hydrolysis. Reactions at higher pH values resulted in lower molecular weight degradation products while reactions at lower pH resulted in higher molecular weight degradation products. When NaCl was added into the reaction mixture, enzyme activities of degradation were increased at all pH values studied, as evidenced by NPN-analysis and SDS-PAGE. More severe degradation was observed with higher salt concentration. The concentration of 0.5M NaCl in the reaction mixture gave more degradation of myosin heavy chain by enzyme than that of 0.1M NaCl.

  • PDF