• Title/Summary/Keyword: DEFORM-2D

Search Result 99, Processing Time 0.024 seconds

Feature Points Tracking of Digital Image By One-Directional Iterating Layer Snake Model (일방향 순차층위 스네이크 모델에 의한 디지털영상의 특징점 추적)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.86-92
    • /
    • 2007
  • A discrete dynamic model for tracking feature points in 2D images is developed. Conventional snake approaches deform a contour to lock onto features of interest within an image by finding a minimum of its energy functional, composed of internal and external forces. The neighborhood around center snaxel is a space matrix, typically rectangular. The structure of the model proposed in this paper is a set of connected vertices. Energy model is designed for its local minima to comprise the set of alternative solutions available to active process. Block on tracking is one dimension, line type. Initial starting points are defined to the satisfaction of indent states, which is then automatically modified by an energy minimizing process. The track is influenced by curvature constraints, ascent/descent or upper/lower points. The advantages and effectiveness of this layer approach may also be applied to feature points tracking of digital image whose pixels have one directional properties with high autocorrelation between adjacent data lines, vertically or horizontally. The test image is the ultrasonic carotid artery image of human body, and we have verified its effect on intima/adventitia starting points tracking.

Process Development of Rotor Shaft using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Cho, J.R.;Lee, N.K.;Park, H.C.;Choi, S.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.401-404
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to different material characteristics, such as, thermal conductivity and flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

  • PDF

A Forging Analysis and Mechanical Properties Evaluation of Superalloy Exhaust Valve Spindle (초내열 합금 배기 밸브 스핀들 단조 해석 및 기계적 특성 평가)

  • Choi, S.G.;Oh, J.S.;Jeong, H.S.;Cho, J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.84-88
    • /
    • 2009
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. The exhaust valves of low speed diesel engines are usually operated at temperature levels of 400-$600^{\circ}C$ and high pressure to enhance thermal efficiency and exposed to the corrosion atmosphere by the exhaust gas. Also, the exhaust valve is subjected to repeated thermal and mechanical loads. So, the nickel-based alloy Nimonic 80A was used for the large exhaust valve spindle. It is composed a 540mm diameter head and a 125mm diameter stem. It is developed large products by hot closed-die forging. Manufacturing process analysis of the large exhaust valve spindle was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to $1080^{\circ}C$ Numerical calculation was performed by DEFORM-2D, a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. Mechanical properties of the large exhaust valve spindle were evaluated by the variety of tests, including microstructure observation, tensile, as well as hardness and fatigue tests, were conducted to evaluate the mechanical properties for head part of exhaust valve spindle.

  • PDF

Process Design for Hot Forging of Asymmetric to Symmetric Rib-Well Shape Steel (비대칭 리브-웨브형강으로부터 대칭 리브-웨브형강으로의 열간단조 공정설계)

  • Cho, Hae-Yong;Lee, Ki-Joung;Choi, Jong-Ung;Jo, Chang-Yong;Lee, Hak-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.152-157
    • /
    • 2003
  • Process design of hot forging, asymmetric to symmetric rib-web shape steel, which is used for the turnout of railway express has been investigated. Owing to the big difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single step. Therefore, multi step forging as well as die design for each step are necessary for the production. The deformation behavior during hot forging has been analyzed by the numerical simulation through commercial FEA software, $DEFORM^{TM}$-2D. Modification of the design and repeated simulation have been carried out on the basis of the simulation result. For comparison with the simulation results. flow analysis experiment using plasticine has been also carried out. The results of the flow analysis experiment showed good agreement with those of the simulation. Therefore, the developed process design could be applied to the actual production.

Finite Element Analysis and Experimental Confirmation of Warm Hydroforming Process (온간 하이드로포밍에 관한 유한요소해석 및 실험적 검증)

  • Kim, B.J.;Park, K.S.;Choi, K.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.277-280
    • /
    • 2006
  • The hydroformability of aluminum alloy sheets at elevated temperatures have been investigated in this study. It is necessary to analyze the variations of the mechanical properties that depend on the forming temperature and the heat conduction during warm hydroforming. Therefore, in this study a coupled simulation of plastic deformation and temperature distribution in the warm hydroforming process is performed and compared with experimental data. The multi-purpose code DEFORM-2D can handle this type of calculations but it takes high computation time if contact heat transfer between die, tube and pressure medium occurs. Experiments were conducted by high temperature tribometer(pin-on-disk) allowing measuring the friction coefficients of the aluminum alloys at several temperatures and these results are applied to the coupled simulation by which the optimal process parameters such as internal pressure and preset temperature on hydroformability can be determined. The comparison of the FE analysis with the experimental results has shown that hydroformability given by bulge height, and temperature distribution of the tube specimen make a little difference with the FE results but the trend predicted by simulation agrees well with experiments.

  • PDF

A study on the formability in warm hydroforming of Al 6061 seamless tube (온간액압성형공정에서 Al 6061 튜브의 소성변형특성에 관한 연구)

  • Yi, H.K.;Lee, Y.K.;Lee, J.H.;Sohn, S.M.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.318-321
    • /
    • 2006
  • In this strudy, the free-bulge test and FE analysis have been used to define the fracture criteria based on the cockroft and Latham's criterion in warm hydroforming of Al 6061 tube. Full annealing and T6 treatment for heat treatment of Al 6061 tube ware used in this study. As-extruded, full annealed and T6-treated Al 6061 seamless tubes were prepared. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed between room temperature and $200^{\circ}C$. And measured flow stress was used to simulate the warm hydroforming. A commercial FEM code, DEFORM-$2D^{TM}$, was used to calculate the damage value. A forming limit based ductile fracture criteria has been proposed by the results of experimental and FE analysis. The calculated values for fracture criteria will be efficient to predict the forming limit in hydroforming for real complex shaped part.

  • PDF

Injection Molding Technology for Thin Wall Plastic Part - II. Side Gate Removal Technology Using Cold Press Cutting Process (초정밀 박육 플라스틱 제품 성형기술- II. 냉간 절단 공정 활용 사이드 게이트 제거기술)

  • Heo, Young-Moo;Shin, Kwang-Ho;Choi, Bok-Seok;Kwon, Oh-Keun
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • In the semiconductor industry the memory and chip were developed to high density memory and high performance chip, so circuit design was also high integrated and the test bed was needed to be thin and fine pitch socket. LGA(Land Grid Array) IC socket with thin wall thickness was designed to satisfy this requirement. The LGA IC socket plastic part was manufacture by injection molding process, it was needed accuracy, stiffness and suit resin with high flowability. After injection molding process the side gates were needed to remove for further assembly process. ln this study, the cold press cutting process was applied to remove the gates. For design of punch and die, the cold press cutting analysis was implemented by$DEFORM-2D^{TM}$ ln consideration of the simulation results, an adequate punch and die was designed and made for the cutting unit. In order to verify the performance of cutting process, the roughness of cutting section of the part was measured and was satisfied in requirement.

A Study on The Burr Formation in Sheet Metal Shearing (박판 전단시의 버 형성에 관한 연구)

  • Shin, Yong-Seung;Kim, Byeong-Hee;Kim, Heon-Young;Oh, Soo-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.166-171
    • /
    • 2002
  • The objective of this paper is to investigate the effect of clearance and the configuration of die system on burr formation by FEM analysis and experimental tests. Compared with casting, forging and machining, shearing has been known, especially in heavy or mass-production industries, as a very economical and fast way to obtain the desired shape Recently, the shearing process becomes widely used in the small and light electronic component manufacturing industries. When shearing a part of sheet metal, the burr formed on the cutting edge is usually unavoidable. The burr would not only degrade the precision of products but also causes additional cost for the deburring process. In this paper, the influence of shearing parameters such as clearance and configurations of the lower pad (ejector) on burr formation is investigated by using the experimental and numerical approach. From the experimental results, it has been shown that the more narrow clearance gives the smaller burr height and the higher shearing forces. The removal of lower holder also makes the sheared surface integrity and the dimensional accuracy become worse. The FEM results (using DEFORM-2D) show good agreement with the experimental results.

Measurement and FEM Analysis of Elastic Deformation According to the Forging Stages in Cold Forging Die (냉간단조용 금형의 변형모드에 따른 탄성변형량의 측정 및 유한요소 해석)

  • 이대근;이영선;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.112-116
    • /
    • 2002
  • In cold forging, the elastic behavior of the die has a direct influence on the accuracy of the forging part. And the die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during loading, unloading, and ejecting stage. Uni-axial strain gauges are used to measure elastic strain of die during each forging stage. Strain gauges are attached on the surface of die. A commercial F.E.M code, DEFORM-2D$\^$TM/ is used to predict elastic strain of die. Two method of F.E.M. analysis are used to compare with measured and calculated elastic strain. One is to regard the die as rigid body over forging cycle. And then, the die sass is analyzed by loading the die with pressure from the forging part. The other is to regard the die as elastic body from forging cycle. The elastic strain of die is calculated and the die is elastically deformed at each strop. The calculated results under the elastic die assumption are well agreed with experimental data using strain gauges.

  • PDF

Development of Rotor Shaft Manufacturing Process using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Lee, N.K.;Park, H.C.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.266-270
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to material characteristics, such as, thermal conductivity and high temperature flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld parameters. FE simulation is performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.