• 제목/요약/키워드: DEFORM

검색결과 460건 처리시간 0.024초

고강도 Fe계 합금의 고온 변형 특성 (High Temperature Deformation Behavior of Fe-base High Strength Alloys)

  • 권운현;최일동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.938-946
    • /
    • 2008
  • Fe-base amorphous alloy and two crystalline phases composite were fabricated. The effect of temperature and strain rate on mechanical properties was evaluated utilizing compression test. Mixture of non-crystalline and crystalline phases were found using X-ray diffraction (XRD) and differential thermal analysis (DTA) tests. Based on glass transition temperature and crystallization temperature. compression tests were performed in the temperature ranging from $560^{\circ}C$ to $700^{\circ}C$ with $20^{\circ}C$ interval. Relationship between microstructure, including fracture surface morphology, and mechanical behavior was studied. The peak stress of Fe-base amorphous alloy was over 2GPa and expected to have a good wear resistance, but it is expected hard to deform because of low ductility. The peak stress and elongation of two crystalline phases composite was over 1GPa and about 20%, therefore it is possible to deform high strength wear resistant materials such as engine valve.

굽은 T形 제품의 편심압출가공에 대한 상계굽힘해석과$ DEFORM^{TM}$-3D에 의한 굽힘 해석 비교 (Analysis of the Curving Phenomenon of Curved T-Shaped Product by the Upper Bound Analysis and the $ DEFORM^{TM}$-3D in Eccentric Extrusion)

  • 김한봉;김진훈;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.49-52
    • /
    • 1997
  • The kinematically admissible velocity field is developed for the analysis of the curving of an eccentric extrusion. The curving of product in extrusion is caused by the difference of the linearly distributed longitudinal velocity on the cross-section of the workpiece at the dies exit. The result of the analysis show that the curvature of product increases with the increase in eccentricity of gravity center of the cross-section of the workpiece at the die entrance from that of the cross-section at the die exit. It also increase with the die land dimension. By the DEFORMTM-3D analysis, the curving of T-shaped product in extrusion is changed by the eccentricity, die land length and the friction constant. The result of the analysis by DEFORMTM-3D software shows that the curvature of circular shaped product increases with the eccentricity. The two analysis and one experiment show the curving phenomenon in eccentric extrusion process.

  • PDF

성형작약탄용 구리라이너의 미세조직 제어연구 (The Study of Copper Liner Micro Structure Control for Shaped Charge)

  • 장수호;박경채;김영무
    • 한국군사과학기술학회지
    • /
    • 제14권6호
    • /
    • pp.1114-1120
    • /
    • 2011
  • Shaped Charge's penetration performance is depended on the shape of warhead and explosive, liner materials. The liner that manufactured to small homogeneous grain increase the penetration performance and decrease the deviation of penetration performance. This texture is obtained by forging process but, creating the process that remove crack and get small homogeneous grain is very hard. In this study, We success to get the homogeneous small grain texture through appling the most suitable process by DEFORM CODE analysis.

CPU 기반의 볼륨 변형을 위한 다형질 Chainmail 모델 (Heterogeneous Chain-mail Model for CPU-based Volume Deformation)

  • 이세인;계희원
    • 한국멀티미디어학회논문지
    • /
    • 제22권7호
    • /
    • pp.759-769
    • /
    • 2019
  • Since a surgery simulation should be able to represent the internal structure of the human body, it is advantageous to adopt volume based techniques rather than polygon based techniques. However, the volume based techniques induce large computation to deform heterogeneous volume datasets such as bones and muscles. In this study, we propose a new method to deform volume data using multi-core CPUs. By improving previous studies, the proposed method minimizes unnecessary propagation operations. Moreover, we propose an efficient task-partitioning method for volume deformation using multi-core CPUs. As a result, we can simulate the deformation of heterogeneous volume data at an interactive speed without special hardware.

이종재료 접합을 위한 Self-Piercing Rivet의 단조공정설계 (Forging Process Design of Self-Piercing Rivet for Joining dissimilar Sheet Metals)

  • 김동범;이문용;박병준;박종권;조해용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.802-807
    • /
    • 2012
  • SPR(Self-piercing rivet)은 판재 접합법으로서 스틸과 알루미늄 합금 등의 이종재료 접합에 사용되고 있다. 접합 공정은 피어싱을 포함한 소성변형이 함께 이루어진다. 프레스에서 펀치의 아래에 있는 리벳은 상부판재를 피어싱하고 하부 판재와 기계적으로 맞물리며 소성변형되어 결합된다. 본 논문에서는 SPR을 제작하기 위한 단조공정을 설계하였고, 이를 위하여 상용 유한요소해석 코드인 DEFORM-2D를 이용하여 해석하였다. 리벳 제작을 위한 단조공정의 설계에서 공정 순서, 성형성, 단조하중, 응력과 변형률 분포 등을 조사하였다. 또한 시뮬레이션 결과를 통하여 적합한 단조공정을 설계하였다. 설계된 공정은 업세팅, 헤드부 성형, 후방압출, 두 번째 챔퍼링의 네 단계로 구성된다. 그리고 단조공정에 대한 시뮬레이션 결과는 같은 조건을 적용한 실험 결과를 통하여 검증하였다.

강체와 비강체 부품의 정의와 지정방법에 대한 제안 (Suggestions of Define Methods by Rigid/Non-Rigid Parts' Definitions)

  • 김재문;장성호;이왕범
    • 산업경영시스템학회지
    • /
    • 제41권3호
    • /
    • pp.115-119
    • /
    • 2018
  • Defining and measuring non-rigid or flexible parts has been controversial in industry for many years. There are two primary areas of controversy. The first is agreeing on what exactly a non-rigid part is. The second is agreeing on how to define and measure a non-rigid part. The subject of non-rigid parts is further complicated by the brief coverage it receives in the national and international standards. This leaves each company to improvise or create its own rules for non-rigid parts. There are some who believe that Geometrical Dimensioning and Tolerancing (GD&T) should not be used on non-rigid parts. This is not true. The ASME Y14.5M standard applies to rigid parts as a default condition. However, there is no definition given for a rigid part. The term rigid part has been used in industry for so long that it has gained a definition by its general use. When most people in industry say rigid part, they are referring to a part doesn't move (deform or flex) when a force (including gravity) is applied. How much force is relative based on the part characteristics. In reality, all parts will deform (or flex) if enough force is applied. Using this logic, all parts would be considered non-rigid. However, we all know that this is not how parts are treated in industry. Although GD&T defaults to rigid parts, it should also be used on non-rigid parts with a few special techniques. Actually 50~60% of all products designed contain parts or features on parts that are non-rigid. Therefore, we try to suggest the definitions of rigid and non-rigid parts and method to measure non-rigid parts.

Efficient flexible boundary algorithms for DEM simulations of biaxial and triaxial tests

  • Liu, Donghai;Yang, Jiaqi
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.189-206
    • /
    • 2020
  • The accurate modeling of boundary conditions is important in simulations of the discrete element method (DEM) and can affect the numerical results significantly. In conventional triaxial compression (CTC) tests, the specimens are wrapped by flexible membranes allowing to deform freely. To accurately model the boundary conditions of CTC, new flexible boundary algorithms for 2D and 3D DEM simulations are proposed. The new algorithms are computationally efficient and easy to implement. Moreover, both horizontal and vertical component of confining pressure are considered in the 2D and 3D algorithms, which can ensure that the directions of confining pressure are always perpendicular to the specimen surfaces. Furthermore, the boundaries are continuous and closed in the new algorithms, which can prevent the escape of particles from the specimens. The effectiveness of the proposed algorithms is validated by biaxial and triaxial simulations of granular materials. The results show that the algorithms allow the boundaries to deform non-uniformly on the premise of maintaining high control accuracy of confining pressure. Meanwhile, the influences of different lateral boundary conditions on the numerical results are discussed. It is indicated that the flexible boundary is more appropriate for the models with large strain or significant localization than rigid boundary.