• Title/Summary/Keyword: DEEP

Search Result 15,974, Processing Time 0.036 seconds

A Survey on Deep Convolutional Neural Networks for Image Steganography and Steganalysis

  • Hussain, Israr;Zeng, Jishen;Qin, Xinhong;Tan, Shunquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1228-1248
    • /
    • 2020
  • Steganalysis & steganography have witnessed immense progress over the past few years by the advancement of deep convolutional neural networks (DCNN). In this paper, we analyzed current research states from the latest image steganography and steganalysis frameworks based on deep learning. Our objective is to provide for future researchers the work being done on deep learning-based image steganography & steganalysis and highlights the strengths and weakness of existing up-to-date techniques. The result of this study opens new approaches for upcoming research and may serve as source of hypothesis for further significant research on deep learning-based image steganography and steganalysis. Finally, technical challenges of current methods and several promising directions on deep learning steganography and steganalysis are suggested to illustrate how these challenges can be transferred into prolific future research avenues.

A Study on the Characteristics of Deep Hole Drilling Process Using Single Edge Drill with Small Diameters (미소직경의 Single Edge형 드릴을 사용한 심공드릴링 공정의 가공특성에 관한 연구)

  • 최성주;이우영;박원규
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Applications of the deep hole drilling process can be found in many industries ranging from large aerospace manufacturer to small tool and die shop. Deep hole drilling process with small diameter generally requires high quality and accuracy. But problems which may arise or result from the deep hole drilling process include drill breakage, the generation of a finished part surface which does not satisfy required quality, and process instability. To guaranty the required machining quality and accuracy, it is important to understand and improve the deep hole drilling process. In this study, deep hole drilling experiments using tingle edge drill with small diameter under 2mm have been carried out for difficult to cut materials such as C42CrMo4 and C45pb and the experimental results were analyzed. Feed force and torque versus feed showed linear relationship in both materials. The feed force and torque are decreased as cutting speed is increased but the trends are not uniform in C42CrMo4.

A Survey of Deep Learning in Agriculture: Techniques and Their Applications

  • Ren, Chengjuan;Kim, Dae-Kyoo;Jeong, Dongwon
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1015-1033
    • /
    • 2020
  • With promising results and enormous capability, deep learning technology has attracted more and more attention to both theoretical research and applications for a variety of image processing and computer vision tasks. In this paper, we investigate 32 research contributions that apply deep learning techniques to the agriculture domain. Different types of deep neural network architectures in agriculture are surveyed and the current state-of-the-art methods are summarized. This paper ends with a discussion of the advantages and disadvantages of deep learning and future research topics. The survey shows that deep learning-based research has superior performance in terms of accuracy, which is beyond the standard machine learning techniques nowadays.

Fuzzy modelling approach for shear strength prediction of RC deep beams

  • Mohammadhassani, Mohammad;Saleh, Aidi MD.;Suhatril, M;Safa, M.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.497-519
    • /
    • 2015
  • This study discusses the use of Adaptive-Network-Based-Fuzzy-Inference-System (ANFIS) in predicting the shear strength of reinforced-concrete deep beams. 139 experimental data have been collected from renowned publications on simply supported high strength concrete deep beams. The results show that the ANFIS has strong potential as a feasible tool for predicting the shear strength of deep beams within the range of the considered input parameters. ANFIS's results are highly accurate, precise and therefore, more satisfactory. Based on the Sensitivity analysis, the shear span to depth ratio (a/d) and concrete cylinder strength ($f_c^{\prime}$) have major influence on the shear strength prediction of deep beams. The parametric study confirms the increase in shear strength of deep beams with an equal increase in the concrete strength and decrease in the shear span to-depth-ratio.

Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network (인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측)

  • 유충식;최병석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

A Study on Neural Networks Forecast Model of Deep Excavation Wall Movements (인공신경망 기법을 활용한 굴착공사 흙막이 변위량 예측에 관한 연구)

  • Shin, Han-Woo;Kim, Gwang-Hee;Kim, Young-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.131-137
    • /
    • 2007
  • To predict deep excavation wall movements is important in the urban areas considering the cost and the safety in construction. Failing to estimate deep excavation wall movements in advance causes too many problems in the projects. The purpose of this study is to propose the forecast model of deep excavation wall movements using artificial neural networks. The data of the Deep Excavation Wall Movements which were done form Long research is used of Artificial neural networks training and apply the real construction work measured data to the Artificial neural networks model. Applying the artificial neural networks to forecast the deep excavation wall movements can significantly contribute to identifying and preventing the accident in the overall construction work.

Analysis of Feature Extraction Algorithms Based on Deep Learning (Deep Learning을 기반으로 한 Feature Extraction 알고리즘의 분석)

  • Kim, Gyung Tae;Lee, Yong Hwan;Kim, Yeong Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.60-67
    • /
    • 2020
  • Recently, artificial intelligence related technologies including machine learning are being applied to various fields, and the demand is also increasing. In particular, with the development of AR, VR, and MR technologies related to image processing, the utilization of computer vision based on deep learning has increased. The algorithms for object recognition and detection based on deep learning required for image processing are diversified and advanced. Accordingly, problems that were difficult to solve with the existing methodology were solved more simply and easily by using deep learning. This paper introduces various deep learning-based object recognition and extraction algorithms used to detect and recognize various objects in an image and analyzes the technologies that attract attention.

Damage Detection in Truss Structures Using Deep Learning Techniques (딥러닝 기술을 이용한 트러스 구조물의 손상 탐지)

  • Lee, Seunghye;Lee, Kihak;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • There has been considerable recent interest in deep learning techniques for structural analysis and design. However, despite newer algorithms and more precise methods have been developed in the field of computer science, the recent effective deep learning techniques have not been applied to the damage detection topics. In this study, we have explored the structural damage detection method of truss structures using the state-of-the-art deep learning techniques. The deep neural networks are used to train knowledge of the patterns in the response of the undamaged and the damaged structures. A 31-bar planar truss are considered to show the capabilities of the deep learning techniques for identifying the single or multiple-structural damage. The frequency responses and the elasticity moduli of individual elements are used as input and output datasets, respectively. In all considered cases, the neural network can assess damage conditions with very good accuracy.

Genetic algorithm based deep learning neural network structure and hyperparameter optimization (유전 알고리즘 기반의 심층 학습 신경망 구조와 초모수 최적화)

  • Lee, Sanghyeop;Kang, Do-Young;Park, Jangsik
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.519-527
    • /
    • 2021
  • Alzheimer's disease is one of the challenges to tackle in the coming aging era and is attempting to diagnose and predict through various biomarkers. While the application of various deep learning-based technologies as powerful imaging technologies has recently expanded across the medical industry, empirical design is not easy because there are various deep earning neural networks architecture and categorical hyperparameters that rely on problems and data to solve. In this paper, we show the possibility of optimizing a deep learning neural network structure and hyperparameters for Alzheimer's disease classification in amyloid brain images in a representative deep earning neural networks architecture using genetic algorithms. It was observed that the optimal deep learning neural network structure and hyperparameter were chosen as the values of the experiment were converging.

Visual Analysis of Deep Q-network

  • Seng, Dewen;Zhang, Jiaming;Shi, Xiaoying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.853-873
    • /
    • 2021
  • In recent years, deep reinforcement learning (DRL) models are enjoying great interest as their success in a variety of challenging tasks. Deep Q-Network (DQN) is a widely used deep reinforcement learning model, which trains an intelligent agent that executes optimal actions while interacting with an environment. This model is well known for its ability to surpass skilled human players across many Atari 2600 games. Although DQN has achieved excellent performance in practice, there lacks a clear understanding of why the model works. In this paper, we present a visual analytics system for understanding deep Q-network in a non-blind matter. Based on the stored data generated from the training and testing process, four coordinated views are designed to expose the internal execution mechanism of DQN from different perspectives. We report the system performance and demonstrate its effectiveness through two case studies. By using our system, users can learn the relationship between states and Q-values, the function of convolutional layers, the strategies learned by DQN and the rationality of decisions made by the agent.