• Title/Summary/Keyword: DECOMPOSITION RATE

Search Result 1,193, Processing Time 0.026 seconds

Thermal Decomposition and Mechanical Properties of Polycarbonate/ABS Blends Prepared by High Shear Rate Processing (고속전단에 의한 폴리카보네이트/ABS 블렌드의 열분해 및 기계적 특성 연구)

  • Yoo, Jae Jung;Yong, Da Kyoung;Lee, Han Ki;Kim, Dae Sik;Lee, Hyung Il;Kim, Sun Hong;Lee, Kee Yoon;Lee, Seung Goo
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.471-476
    • /
    • 2014
  • Polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blends were prepared using a high shear extruder to investigate their thermal decomposition and mechanical properties with shear rate and shear time. In this experiment, high shear rate, from 1000 to 3000 rpm, in blending process was applied for 10 to 40 sec, respectively. At high shear rate over than 2000 rpm, the initial decomposition temperature was dropped significantly compared to a compounded sample because of thermal decomposition of the blend by high shear. Consequently, high shear processing gave an important effect on the mechanical and thermal properties of the PC/ABS blend. In particular, elongation of the blend decreased significantly with shear rate.

Decomposition Characteristics and Seedling Growth of Common Reed (Phragmites australis) by Salt Concentration in Saemangeum Reclaimed Land (새만금 간척지에서 염농도에 따른 갈대(Phragmites australis) 유묘 생장 및 분해 특성)

  • Oh, Yang-Yeol;Kim, Sun;Ryu, Jin-Hee;Lee, Su-Hwan;Lee, Jung-Tae;Bae, Hui-Su;Kim, Young-Joo;Kim, Kil-Young
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1061-1069
    • /
    • 2019
  • Common reed (Phragmites australis) is widespread in reclaimed land and wetland habitats. Every year, the common reed produces extensive colonies by means of underground rhizomes and ground-surface stolons. From an agricultural point of view, the common reed's large biomass is a good material for supplying organic matter. However, it has not yet been studied in terms of seedling production, transplanting conditions, and decomposition characteristics in reclaimed land. Seeds were harvested from the native common reed in Saemangeum, South Korea, the previous year and stored on an open field. The seeds were sowed in the greenhouse at the beginning of April. Common reed decomposition was studied from June to September, with the use of coarse mesh (5 mm) stem litterbags, on three samping dates and with five replicate packs per sample. These packs were dug in five soil condition (low-salinity topsoil, subsoil, high-salinity topsoil, subsoil, paddy topsoil) to 0.2 m and 0.4 m depth. The highest germination rate of common reed seeds was observed in non-salt solution, but the exhibited germination rate was 70% at 9.38 dS m-1. The plant height of young reed decreased steadily with increasing salinity, but leaf number did not decrease by 9.38 dS m-1. The survival rate of the two-year-old reed was 83.3%, which was 35% higher than that of the one-year reed. The transplant success rate was 0% in the no vinyl mulching in the soil, but the first year and second year seedlings survived rates were 63% and 83.3%, respectively, in vinyl mulching. Common reed decomposition rates were faster low salinity than high salinity. All nutrient contents were found to fluctuate significantly with time by soil conditions. We also need to study the growth rate of reed transplanting seedlings by soil moisture contents and the comparison of degradation in common reed tissues.

Mass Loss and Changes of Nutrients during the Decomposition of Typha angustata (애기부들의 분해 및 분해과정에 따른 영양염류의 변화)

  • 문형태;남궁정;김정희
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2000
  • Mass loss and changes of mineral nutrient during the decomposition of Typha angustata for 13 months from November in 1998 to December in 1999, were investigated in small watercourse in Boryeong, Chungnam Province, Korea. After 13 months, remaining mass of leaves, stems and rhizomes was 34.7%, 59.2%, 7.2%, respectively. The rate of weight loss of the rhizomes was significantly higher than those of the leaves and stems. The decay rate of leaves, stems and rhizomes was 1.06, 0.52, $2.63 yr^{-1}$, respectively Initial concentration of nutrients in leaves, stems and rhizomes was 11.5, 9.0, 14.5 mg/g for N, 0.30, 0.27, 0.47 mg/g for P, 20.7, 26.9, 26.6 mg/g for K, 14.50, 4.77, 3.25 mg/g for Ca, and 1.99, 1.32, 2.07 mg/g for Mg, respectively. Except for Ca, concentrations of nutrients in rhizomes were higher than those in stems and rhizomes. There was no immobilization period during the decomposition of each organ of T. angustata. In case of K, most are lost during the first 1 month. Phosphorus in decomposing leaves and stems lost 58% and 66%, respectively, of the initial P capital within 1 month. [Decay rate, Decomposition, Immobilization, Macrophytes, Nutrients, Typha angustata].

  • PDF

Decomposition of Formaldehyde Using TiO$_2$ Photocatalyst Beads by Circulating Fluidized Bed Chemical Vapor Deposition (CFB-CVD법으로 제조된 TiO$_2$ 광촉매 비드를 이용한 포름알데히드의 분해)

  • Kim, Kyoung-Hwan;Kim, Yu-Bong;Lee, Seung-Young;Park, Jae-Hyeon;Lim, Jin-Young;Jung, Sang-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.688-693
    • /
    • 2008
  • TiO$_2$ photocatalyst films deposited beads were prepared by circulating fluidized bed chemical vapor deposition(CFB-CVD) using TTIP(Titanium Tetra Iso-Propoxyde). Photocatalytic activities of Photocatalyst beads were evaluated by decomposition rate of formaldehyde in aqueous solution using a photo-reactor. From the result of photocatalytic degradation of formaldehyde, decomposition rate were shown gradually increased according to the increase of UV intensity, circulating fluid velocity and addition amount of H$_2$O$_2$. However the decomposition rate of formaldehyde were decreased according to the increase of initial concentration and pH value.

Mass Loss and Changes of Nutrients during Decomposition of Phragmites communis at the Fringe of Stream

  • Mun, Hueong-Tae;Namgung, Jeong;Namgung, Jeong-Hee-Namgung
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.157-161
    • /
    • 2000
  • Mass loss and changes of mineral nutrients during decomposition of Phragmites communis for 13 months from November 1998 to December 1999, were investigated at the fringe of stream at Boryeong, Chungnam Province in Korea. Plant materials, which were collected in November 1998. were divided into leaves, culms and rhizomes. Litterbags, 15${\times}$15 cm, were made of nylon mesh with 2-mm$^2$ holes. At 13 months after installation, remaining mass of leaves, culms and rhizomes was 29.0%, 57.4%, 20.6%, respectively. Mass loss rate of the culms was significantly lower than those of the leaves and rhizomes. The decay rate of leaves, culms and rhizomes was 1.21. 0.42 and 1.48 per year, respectively. Initial concentration of N, P, K, Ca and Mg of leaves. culms and rhizomes was 22.5, 9.0, 15.5 mg/g for N, 0.34. 0.10, 0.33 mg/g for P, 15.0, 12.5. 12.3 mg/g for K, 2.84. 0.80, 0.03 mg/g for Ca. 1.94. 0.97, 0.40 mg/g for Mg, respectively. Concentrations of nutrients were higher in leaves than in culms and rhizomes. Except for N and Mg in rhizomes, there was no immobilization period during the decomposition. In the case of remaining K and Ca, most are lost during the first 3 months. Without any suitable method for removal of dead part, eutrophication of freshwater may be accelerated by dead macrophytes.

  • PDF

Non-isothermic Analysis of Reaction Rate for the Thermal Decomposition of Na2B4O7·10H2O (Na2B4O7·10H2O 열분해 반응속도의 비등온해석)

  • Choi, Ho-Sang;Park, Young-Tae;Lee, Soo-Kag
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1029-1033
    • /
    • 1997
  • Fundamental research of non-isothermic analysis of reaction rate has been carried out for the heat storage system using the thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O$. It was found that the equilibrium temperature of the thermal decomposition reaction was lowered less than 373K in $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ system, but the heat efficiency was unchanged. The initiation temperature of the reaction was varied from low to high temperature region with heating rate. The reaction order of the dehydration reaction by the thermal decomposition was appeared to be 0.67 by non-isothermic analysis, thereby $Na_2B_4O_7{\cdot}10H_2O$ may be used as a hemical heatstorage material.

  • PDF

Decomposition of Ethylene by Using Dielectric Barrier Discharge Plasma (유전체 배리어 방전 플라즈마를 이용한 에틸렌의 분해)

  • Jang, Doo Il;Lim, Tae Hun;Lee, Sang Baek;Mok, Young Sun;Park, Hoeman
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.608-613
    • /
    • 2012
  • Dielectric barrier discharge plasma reactor was applied to the removal of ethylene from a simulated storage facility ($1.0m^3$) of fruits and vegetables. The system operated in a closed-loop mode by feeding the contaminated gas to the plasma reactor and recirculating the treated gas back to the storage facility. The experiments were carried out with parameters such as discharge power, circulation flow rate, initial ethylene concentration and treatment time. The rate of ethylene decomposition was mainly controlled by the discharge power and the treatment time. With the other conditions kept constant, the ethylene decomposition rate in the presence of the manganese oxide ozone control catalyst installed downstream from the plasma reactor was lower than that in the absence of it. The suggests that unreacted ozone from the plasma reactor accumulated in the storage facility where it additionally decomposed ethylene. On the basis of an initial ethylene concentration of 50 ppm, the energy requirement for completing the decomposition was about 60 kJ.

Effect of Siloxane Oligomer on Thermal Stability and Internal Stress of Epoxy Resins (실록산 올리고머가 에폭시 수지의 열안정성 및 내부응력에 미치는 영향)

  • Kwak, Geun-Ho;Park, Soo-Jin;Park, Jun-Ha;Kim, Kong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.701-706
    • /
    • 1999
  • The effect of siloxane oligomer content on thermal stability and internal stress of DGEBA epoxy resin was investigated. Siloxane-epoxy polymers having terminal epoxy group were prepared by reaction of siloxane-DDM prepolymer with DGEBA epoxy resin. Thermal stability was studied in terms of the initial decomposition temperature(IDT), temperature of maximum rate of weight loss($T_{max}$), integral procedural decomposition temperature(IPDT), and decomposition activation energy($E_t$) using TGA data. The thermal stability increased with increasing the siloxane oligomer content and showed a maximum value in the case of 5 wt% siloxane oligomer content in the blend system. While, the coefficient of thermal expansion(${\alpha}_r$) and the flexural modulus($E_r$) allowed us to study internal stress of the blend system. As the content of siloxane oligomer increases, the internal stress systematically decreases as decreasing both ${\alpha}_r$ and $E_r$.

  • PDF

A Study on Characteristics of NOx and Ozone by Plasma Reaction (Plasma반응에 의한 NOx와 Ozone의 특성에 관한 연구)

  • Choi Jae Wook;Yamaguma Mizuki;Choi Jae Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.1-6
    • /
    • 2000
  • In this experiment, we made the plasma reactor which adhere needle electrode in order to treat safely an NOx which was included in the gas. Also we experimently investigated characteristics of equipment and inspected efficiency. As a reaction gas, by using mixture gas of $NO/N_2$ and $N_2/O_2$, we setted up initial NO concentration and gas flow rate was set at 2 ${\iota}$/min. As a reaction characteristics of NOx, when discharge input power was high, NO concentration decreased and when the oxygen concentration increased, the NO decomposition was easy and decomposition energy efficiency was high. Also in case that NO concentration increased, NO decomposition energy efficiency was high but decomposition rate was low. The characteristics of ozone, when discharge input power was high, ozone increased and when $NO/N_2$ concentration increased, the ozone decreased.

  • PDF

The Distribution of Nitrogen and the Decomposition Rate of Organic Nitrogen in the Youngsan River and the Sumjin River, Korea (영산강과 섬진강 수계의 질소 분포와 유기질소 분해속도)

  • Kim, Jihye;Kim, Bomchul;Shin, Myoungsun;Kim, Jaiku;Jung, Sungmin;Lee, Yunkyoung;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.142-150
    • /
    • 2009
  • The distribution of organic nitrogen and its decomposition rate were studied in the Youngsan River and the Sumjin River system in Korea. Samples were conducted seasonally in June, August, December of 2006, and February of 2007. Collected samples were incubated for 20 days in a dark chamber ($20{\pm}1^{\circ}C$) and analyzed the changes of nitrogen form (particulate organic nitrogen, dissolved organic nitrogen, ammonia, nitrite, and nitrate). The mean total nitrogen (TN) concentration in the Youngsan River and the Sumjin River were $2.62mgN{\cdot}L^{-1}$ and $1.53mgN{\cdot}L^{-1}$, respectively. TN comprised of 65% DIN and 35% ON. The decomposition coefficients of organic nitrogen were also determined by two different fitting models. The decomposition rates of nitrogen species (TON, LPON, LDON, ${NH_4}^+$ and ${NO_2}^-$) ranged from 0.024 to $1.043day^{-1}$ in the Youngsan River and 0.008 to $0.693day^{-1}$ in the Sumjin River, respectively. The result of this study can give a guide to the selection of parameters in the calibration processes of water quality models.