• Title/Summary/Keyword: DEAP dataset

Search Result 4, Processing Time 0.02 seconds

A Study on the analyzation method of EEG adapting Dataset (Dataset을 활용한 뇌파 데이터 분석 방법에 관한 연구)

  • Lee, HyunJu;Shin, DongIl;Shin, DongKyoo
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.995-997
    • /
    • 2014
  • 뇌파는 최근에 가장 많이 연구되고 있는 생체신호이다. 본 연구에서는 오픈 감정뇌파데이터인 DEAP Dataset를 활용한 데이터 분석 실험을 시행하였다. DEAP Dataset는 총 32개의 데이터이며, 32채널로 구성되어 있다. 전처리 과정에서는 디지털 필터인 IIR(Infinite Impulse Response) Filter를 사용하여 잡음을 제거하였고, 인공산물인 안구잡파(EOG: Electrooculograms) 제거에는 LMS(the Least Mean squares) 알고리즘을 사용하였다. 감정분류는 Valence-Arousal 평면을 사용하여 네 개의 감정으로 구분하였고, 분류 실험으로는 패턴인식 알고리즘인 SVM(support Vector Machine)를 사용하였다. 실험결과 SVM이 70%대의 결과를 도출하여 이전 실험결과보다 높은 정확도를 도출하였다.

Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management

  • Choi, Eun Jeong;Kim, Dong Keun
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.309-316
    • /
    • 2018
  • Objectives: Both the valence and arousal components of affect are important considerations when managing mental healthcare because they are associated with affective and physiological responses. Research on arousal and valence analysis, which uses images, texts, and physiological signals that employ deep learning, is actively underway; research investigating how to improve the recognition rate is needed. The goal of this research was to design a deep learning framework and model to classify arousal and valence, indicating positive and negative degrees of emotion as high or low. Methods: The proposed arousal and valence classification model to analyze the affective state was tested using data from 40 channels provided by a dataset for emotion analysis using electrocardiography (EEG), physiological, and video signals (the DEAP dataset). Experiments were based on 10 selected featured central and peripheral nervous system data points, using long short-term memory (LSTM) as a deep learning method. Results: The arousal and valence were classified and visualized on a two-dimensional coordinate plane. Profiles were designed depending on the number of hidden layers, nodes, and hyperparameters according to the error rate. The experimental results show an arousal and valence classification model accuracy of 74.65 and 78%, respectively. The proposed model performed better than previous other models. Conclusions: The proposed model appears to be effective in analyzing arousal and valence; specifically, it is expected that affective analysis using physiological signals based on LSTM will be possible without manual feature extraction. In a future study, the classification model will be adopted in mental healthcare management systems.

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Electroencephalogram-based emotional stress recognition according to audiovisual stimulation using spatial frequency convolutional gated transformer (공간 주파수 합성곱 게이트 트랜스포머를 이용한 시청각 자극에 따른 뇌전도 기반 감정적 스트레스 인식)

  • Kim, Hyoung-Gook;Jeong, Dong-Ki;Kim, Jin Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.518-524
    • /
    • 2022
  • In this paper, we propose a method for combining convolutional neural networks and attention mechanism to improve the recognition performance of emotional stress from Electroencephalogram (EGG) signals. In the proposed method, EEG signals are decomposed into five frequency domains, and spatial information of EEG features is obtained by applying a convolutional neural network layer to each frequency domain. As a next step, salient frequency information is learned in each frequency band using a gate transformer-based attention mechanism, and complementary frequency information is further learned through inter-frequency mapping to reflect it in the final attention representation. Through an EEG stress recognition experiment involving a DEAP dataset and six subjects, we show that the proposed method is effective in improving EEG-based stress recognition performance compared to the existing methods.