• Title/Summary/Keyword: DEAE-Sephadex

Search Result 441, Processing Time 0.031 seconds

Purification of Complement System-Activating Polysaccharide from Hot Water Extract of Young Stems of Cinnamomum cassia Blume (계지(桂枝) 열수추출물로부터 보체계 활성화 다당의 정제)

  • Kweon, Mee-Hyang;An, Hyun-Jung;Shin, Kwang-Soon;Na, Gyeong-Su;Sung, Ha-Chin;Yang, Han-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • A complement system-activating (anti-complementary) polysaccharide was purified from the hot water extract of young stems of Cinnamomum cassia Blume. Crude polysaccharide fraction (CC-1) was prepared from the hot water extract of the young stems followed by methanol-reflux, precipitation with ethanol, dialysis, and lyophilization. The anti-complementary activity of CC-1 was decreased greatly by periodate oxidation, but was not changed by pronase digestion. These suggest that carbohydrate moiety may be related to the activation of complement system. According to its ionic strength CC-1 was fractionated first using cetavlon to give 4 fractions, CC-2, 3, 4 and 5. Among them CC-2 fraction was found to retain the highest activity and yield. CC-2 was separated to an unabsorbed neutral sugar portion (CC-2-I) and seven absorbed acidic sugar fractions $(CC-2-II{\rightarrow}CC-2-VIII)$ on DEAE-Toyopearl 650C (Cl-). CC-2-III showing higher anti-complementary activity and yield than those of other fractions, was further purified on the gel permeation of Sephadex G-100 and Sepharose CL-6B to CC-2-IIIa-3. CC-2-IIIa-3 was determined to have a homogeneity hy GPC (Sepharose CL-6B) and HPLC. Gel chromatography using standard dextrans gave a value of $2.4{\times}10^5$ for the molecular weight. The purified polysaccharide, CC-2-IIIa-3 consisted of arabinose, xylose, glucose, galactose, galacturonic acid and glucuronic acid in a molar ratio of 5.56 : 3.77 : 1.87 : 1.00 : 5.12 : 3.13 and contained no nitrogen.

  • PDF

Production of Amylase by a Thermophi1ic Fungus, Mucor Sp. (고온성(高溫性) 사상균(絲狀菌) Mucor Sp.에 의(依)한 Amylase의 생산(生産))

  • Lee, Sang Ho;Park, Yoon Joong
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.2
    • /
    • pp.153-163
    • /
    • 1988
  • This experiment was carried out to obtain the thermophilic fungus producing amylase and to investigate properties of the amylase. The selected strain, L-11 was obtained from soil in the vicinity of a hot spring and identified as Mocor sp.. And then the conditions for enzyme production in wheat bran cultures and properties of the crude enzyme were investigated. Furthermore, the enzyme was purified and the characteristics of purified enzyme were studied. The results obtained were as follows: 1. On the wheat bran medium added 80-100% water, amylase was effectively produced by the selected strain, L-11 for 48 hrs incubation at $50^{\circ}C$. 2. When the crude enzyme solution of the strain L-11 was passed through DEAE-Sephadex A-50 column chromatography, two peaks having amylase activity were obtained, and one peak was that of the main enzyme (enzyme of B peak). 3. The purified enzyme (enzyme of B peak) was recognized as single protein band on polyacrylamide disc gel electrophoresis. 4. In the hydrolysis reaction of soluble starch by the enzyme of main amylase, oligosaccharides produced at early stage were maltose and maltotriose mainly and procedure of the reaction maltose amount of maltose and glucose was increased. 5. The strain L-11 was recognized as a special strain producing ${\alpha}-amylase$ mainly and scarcely glucoamylase. 6. The optimum pH, optimum temperature, pH stability, and temperature stability of ${\alpha}-amylase$ were pH 4.0, $60-65^{\circ}C$, pH 4.0-9.0, and below$70^{\circ}C$.

  • PDF

Studies on the Raw Starch Saccharifying Enzyme from the Aspergillus niger and Its Mutants (Aspergillus niger 및 그 변이주(變異株)의 생전분당화효소(生澱粉糖化酵素)에 관(關)한 연구(硏究))

  • Sohn, Cheon Bae;Park, Yoon Joong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.166-185
    • /
    • 1983
  • Aspergillus niger IFO 8541 (NRRL 3112) was investigated through a series of UV rays and N-Methyl-N'-Nitro-N-Nitrosoguanidine (NTG) treatments to induce mutants that produce highly active raw starch saccharifying enzyme, and two mutants with strong enzymatic productivity were obtained. The mutants obtained were investigated for their fungal characters, condition of enzyme production, and other activities. Furthermore, the raw starch saccharifying enzyme was purified and the characteristics of purified enzyme were studied. The results obtained were summarized as follows; 1. The color of conidial head of UV-46 mutant obtained from UV rays treatment was changed to tan type and the gelatinated starch saccharifying enzyme productivity and the raw starch saccharifying enzyme productivity increased up to twice and 1.8 times compared to the productivities of original Aspergillus niger IFO 8541 cultured on the wheat bran, respectively. 2. The conidial head color of NG-41 mutant obtained from NTG treatment became lighter than that of parent strain. The gelatinated starch saccharifying enzyme productivity and raw starch saccharifying enzyme productivity increased about 1.8 times, and twice over the Aspergillus niger IFO 8541 parent strain cultured on wheat bran, respectively. The productivity of ${\alpha}$-amylase increased about 3 times more than the parent strain. 3. Two peaks of glucoanlylase and a peak of ${\alpha}$-amylase were obtained when enzyme solution of mutants and parent strain were passed through DEAE-Sephadex A-50 column chromatography. Glucoamylase I showed only gelatinated starch saccharifying enzyme activity. However, glucoamylase II (raw starch saccharifying enzyme) showed both raw starch saccharifying enzyme activity and gelatinated starch saccharifying enzyme activity. 4. Mutant, UV-46 was strengthened in glucoamylase II productivity and mutant NG-41 was strengthened in ${\alpha}$-amylase productivity. 5. Glucoamylase II of mutants and parent strain were appeared to have the same enzymatic properties. 6. Glucoamylase II of mutants and parent strain were recognized as simple enzyme through electrophoresis. 7. The glucoamylase II crystallized showed rhombic board type. 8. The molecular weight, isoelectric point, optimum pH, and optimum temperature of the glucoamylase II crystallized were estimated as 76,000, 3.4, 3.5 and $60^{\circ}C$, respectively.

  • PDF

Characterization of Trypsin Inhibitors Purified from Trichosanthes kirilowii Root (하눌타리박의 뿌리로부터 분리 정제한 Trypsin Inhibitor들의 특성)

  • Park, Eun-Ju;Yun, Doo-Hee;Cho, Eun-Jyung;Ryu, Byung-Hho;Kim, Hee-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.81-87
    • /
    • 1994
  • Two different trypsin inhibitors, TRTI-1 and TRTI-2, were purified to near homogenity from Trichosanthes kirilowii root, by $0{\sim}90%$ saturated ammonium sulfate salting out, DEAE-Sephacel ion exchange chromatography, Sephadex G-50 gel filtration chromatography and trypsin-affinity chromatography. The molecular weight of TRTI-1 and TRTI-2 were estimated to be about 5,000 Da and 24,000 Da, respectively, by gel filtration and must be monomer and homodimer since they contain 4,000 Da and 10,000 Da each on SDS-polyacrylamide gel electrophoresis. TRTI-1 was stable after heating for at least 2 hr at $100^{\circ}C$ but TRTI-2 was completely inactivated after heating for 10 min at $90^{\circ}C$. When Bz-dl-Arg-pNA was used as a substrate of TPCK-treated trypsin, half-maximal inhibitions of TRTI-1 and TRTI-2 were observed at $0.8\;{\mu}M$ and 6\;${\mu}M$, repectively. Both TRTI-1 and TRTI-2 inhibited the hydrolysis of trypsin competitively and Km values were $0.97\;{\mu}M$ and $0.63\;{\mu}M$, respectively. Both TRTI-1 and TRTI-2 specifically inhibited trypsin but they did not inhibit other proteases tested, chymotrypsin, papain, elastase, collagenase, thermolysin, Nagarase, pepsin, and thrombin.

  • PDF

Purification, and Biochemical and Biophysical Characterization of Cellobiohydrolase I from Trichoderma harzianum IOC 3844

  • Colussi, Francieli;Serpa, Viviane;Da Silva Delabona, Priscila;Manzine, Livia Regina;Voltatodio, Maria Luiza;Alves, Renata;Mello, Bruno Luan;Nei, Pereira Jr.;Farinas, Cristiane Sanches;Golubev, Alexander M.;Santos, Maria Auxiliadora Morim;Polikarpov, Igor
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.808-817
    • /
    • 2011
  • Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed ${\alpha}$- helices and ${\beta}$-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of $50^{\circ}C$ with specific activities against Avicel and p-nitrophenyl-${\beta}$-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.

Polyphenol Compounds and Biochemical Characteristics of Polyphenol Oxidase in Chinese Chestnut (밤의 Polyphenol물질과 Polyphenol Oxidase의 생화학적 특성)

  • Yun, Ki Yun;Moon, Kwang Deog;Sohn, Tae Hwa
    • Current Research on Agriculture and Life Sciences
    • /
    • v.9
    • /
    • pp.51-59
    • /
    • 1991
  • This study was conducted to understand browning characteristics of Chinese Chestnut during processing and storage. For this, the isolation and identification of polyphenolic compounds and the biochemical characteristics of polyphenol oxidase(PPO) were investigated. The content of total phenol was $6.5{\mu}g/g$ and it was consisted of ferulic acid, caffeic acid, synapic acid, p-coumaric acid, gallic acid and salicylic acid in order. PPO was purified 11.7 fold through ammonium sulfate fractionation, DEAE-cellulose column chromatography and Sephadex G-200 column chromatography. Purified enzyme showed single protein and activity band by polyacrylamide gel electrophoresis. The optimum pH and temperature of PPO were 5.9 and $45^{\circ}C$, respectively. The activity of PPO was lost 93% by exposing at $80^{\circ}C$ for 15minutes. $Mg^{{+}{+}}$, $Ca^{{+}{+}}$, $Zn^{{+}{+}}$ increased the activity of PPO, but $Fe^{{+}{+}}$, $K^+$, $Hg^{{+}{+}}$ inhibited PPO at 10mM concentration. L-ascorbic acid, thiourea, sodium chloride and L-cysteine were effective inhibitors of PPO. The activity of PPO was higher for o-diphenols than other polyphenols. The Km value of PPO for catechol was 5mM.

  • PDF

Purification and Gene Analysis of Peptidyl Prolyl cia-trans Isomerase from Bacillus stearothermophilus (Bacillus stearothermophilus Peptidyl Prolyl cis-trans Isomerase의 정제 및 유전자 분석)

  • 김동주
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.104-111
    • /
    • 2002
  • The peptidyl prolyl sis-trans isomerase (PPIase, EC 5.2.1.8) from bacillus stearothermophilus was extracted from the cells treated with by lysozyme. PPIase was purified from the cell extracts by heat treatment, ammonium sulfate precipitation, ion exchange chromatography and finally gel filtration, sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE). The molecular weight of the purified PPIase was estimated as 18kDa by SDS-PAGE. The 39 amino acid residues from the N-terminus were determined by the protein sequencer. The enzyme showed the optimum pH at 8.0 and was stable at the range of pH 7.0∼8.0. The enzyme was considerably stable after heat treatment at 60$\^{C}$ for 30minutes, and the enzyme was quite stable up to 65$\^{C}$. The presence of the PPIase in the refolding solution accelerated the isomerization rate of the assay peptide. PPIase gene of Bacillus stearothermophilus was screened from a genomic library by plaque hybridization using the A-l primer as a probe. A PPIase positive plaque contained a 3.0kb insert of the chromosomal DNA. A 3.0kb fragment was subcloned into pUC18, resulting pPI-40. A DNA fragment encoding the N-terminal portion of the PPIase in pPI-40 was amplified by polymerase chain reaction(PCR) method using the A-1 and B-2 primers. The amplified fragment was cloned into the Sma I site of pUC18 and recombinant plasmid was designated as pSN-18. The nucleotide sequence of 167bp fragment was determined. The deduced amino acid sequence of PPIase was completely matched with the determined N-terminal amino acid sequence of PPIase B. stearothermophilus.

Purification and Characterization of Lipase from Acinetobacter sp. B2 Isolated from Oil­contaminated Soil (유류오염지역에서 분리한 Acinetobacter sp. B2로부터의 Lipase 정제 및 특성)

  • Son Seung Hwa;Park Kyeong Ryang
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.320-327
    • /
    • 2004
  • Three hundreds thirty two bacterial colonies which were able to degrade crude oil were isolated from soil sam­ples that were contaminated with oil in Daejeon area. Among them, one bacterial strain was selected for this study based on its higher oil degrading ability, and this selected bacterial strain was identified as Acinetobactor sp. B2 through physiological-biochemical tests and analysis of its 16S rRNA sequence. Acinetobactor sp. B2 was able to utilize various carbohydrates but did not utilize trehalose and mannitol as a sole carbon source. Acinetobactor sp. B2 showed a weak resistance to antibiotics such as kanamycin, streptomycin, tetracycline and spectinomycin, but showed a high resistance up to mg/ml unit to heavy metals such as Ba, Li, Mn, AI, Cr and Pb. The optimal growth temperature of Acinetobactor sp. B2 was $30^{\circ}C.$ The lipase produced by Acinetobactor sp. B2 was purified by ammonium sulfate precipitation, DEAE-Toyopearl 650M ion exchange chromatography and Sephadex gel filtration chromatography. Its molecular mass was about 60 kDa and condition for the optimal activity was observed at $40^{\circ}C$ and pH 10, respectively. The activation energy of lipase for the hydrolysis of p­nitrophenyl palmitate was 2.7 kcal/mol in the temperature range of 4 to $37^{\circ}C,$ and the enzyme was unstable at the temperature higher than $60^{\circ}C.$ The Michaelis constant $(K_m)\;and\;V_{max}$ for p-nitrophenyl palmitate were 21.8 uM and $270.3\;{\mu}M\;min^{-1}mg^{-1},$ respectively. This enzyme was strongly inhibited by 10 mM $Cd^{2+},\;Co^{2+},\;Fe^{2+},\;Hg^{2+},$ EDTA and 2-Mercaptoethalol.

Purification and characteristics of bromelain from Korean pineapple (한국산 파인애플에서 분리한 bromelain의 정제와 특성)

  • Choi, Cheong;Son, Gyu-Mok;Cho, Young-Je;Chun, Sung-Sook;Lim, Sung-Il;Seok, Yeoung-Ran
    • Applied Biological Chemistry
    • /
    • v.35 no.1
    • /
    • pp.23-29
    • /
    • 1992
  • Bromelain was purified from Korean pineapple, Ananas comosus, L. The enzyme was purified about 21 fold by DEAF-cellulose ion-exchange chromatography and gel filtration on Sephadex G-150. Purified enzyme was confirmed as active single band by polyacrylamide electrophoresis and the molecular weight was estimated to be about 22,000 by SDS-PAGE. The optimum pH and temperature were 6.0 and $60^{\circ}C$, respectively. The range of its stability to the pH and temperature were respectively 5.0 to 7.0 and below $50^{\circ}C$. It was found that $Mn^{2+}$ increased the enzyme activity, whereas $Mg^{2+}\;and\;Fe^{2+}$ decreased it abruptly. The purified enzyme was inhibited by p-chloromercuribenzoic acid, indicating that reactive SH groups are required for the enzyme activity. The reaction of the enzyme followed typical Michaelis-Menten kinetics with Km value of $5.747{\times}10^{-4}\;M\;and\;Vmax\;of\;131.58\;{\mu}g/min$ for casein. When meat was treated with the enzyme, free soluble nitrogen and amino acid nitrogen increased as enzyme concentration increased.

  • PDF

Characterization of Carboxymethyl Cellulase Produced by Cellulomonas sp. CS1-1 on Microcrystalline Cellulose (Cellulomonas sp. CS1-1이 미소결정성 섬유소로부터 생산한 Carboxymethyl Cellulase의 효소적 성질)

  • Park, Jong-Soo;Yoon, Min-Ho;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.275-282
    • /
    • 1997
  • The prcx.iuction of extracellular 1,4-${\beta}$-glucanase by Cellulomonas sp. CS1-1 on microcrystalline cellulose, sigmacell was maximal after 5-day cultivation as 280 units/mL, which was three times higher than the level produced on carboxymethyl cellulose. A carboxymethyl cellulase containing the carbohydrate of 8.2% was purified from the culture filtrate by successive procedures of column chromatographies. Purification factor was calculated as 22-folds with the specific carboxymethyl cellulase activity of 31.9 units/mg. The molecular weight and isoelectric point of the purified enzyme were 54,000 and pI 5.4, respectively. The optimal pH and temperature were 6.0 and $45^{\circ}C$, and the enzyme was stable between pH 6.5 and 7.5 and below $50^{\circ}C$. The estimated Km and Vmax were 10 mg/mL and $6.25{\mu}mol/min$ for carboxymethyl cellulose and 30.3 mg/mL and $2.85{\mu}mol/min$ for sigmacell, respectively. The enzyme was partially inhibited by $Ag^+$, $Zn^{+{+}}$, $Fe^{+{+}}$ and EDTA, while completely inhibited by $Cd^{+{+}}$ and $Hg^{+{+}}$ at 1 mM concentration.

  • PDF