In this study, we had investigated several input factors and output factors, to maintain safety management, of domestic shipping companies, and then had analyzed the efficiency of performance of performance about each shipping companies' safety management system from 1998 year to 2004 year using DEA method As the result of analysis, the annual mean efficiency of total companies tended downward every year. Analysis was that the cause was increase of the cost of repairing ship, the cost of ship's stores and idle day of ship.
This paper evaluated the relative efficiency of 33 provincial medical centers using Data Envelopment Analysis(DEA) and compared the DEA efficiency results with those of the current method conducted by the management evaluation team. DEA Was selected as an alternative efficiency evaluation method since it could handle multiple inputs and multiple outputs simultaneously and identify the sources of inefficiency. To analyze the sensitivity of productivity values to the variable sets, four different sets of input and output variables were identified. Results showed that most of the medical centers are operating far away from the efficiency frontier supporting the previous results. Some centers showed 100% efficiency regardless of the selected variable sets. DEA results are compared with current management evaluation results. Some inconsistencies were found for some DMUs between the results of two methods showing the existence of methodology bias. DEA results and ratio analyses results mostly agree for 1992 data.
We propose a method for selection of input-output factors in DEA. It is designed to select better combinations of input-output factors that are well suited for evaluating substantial performance of DMUs. Several selected DEA models with different input-output factors combinations are evaluated, and the relationship between the computed efficiency scores and a single performance criterion of DMUs is investigated using decision tree. Based on the results of decision tree analysis, a relatively better DEA model can be chosen, which is expected to well represent the true performance of DMUs. We illustrate the effectiveness of the proposed method by applying it to the efficiency evaluation of 101 listed companies in steel and metal industry.
Journal of the Korean Operations Research and Management Science Society
/
v.23
no.3
/
pp.75-90
/
1998
The improper use of input and output factors in DEA has a critical and negative impact on the efficiency measurement and the discernment of decision making units(DMUs) : hence the proper selection Process of the factors should precede the actual applications of DEA. In this paper, we propose a new approach to selecting proper factors based on Tofallis' partial efficiency evaluation method(1996). With the approach, the factors aye clustered by measuring their respective partial efficiencies and analyzing the rank correlations of them. The method and procedure we propose in this paper are then applied to measure the efficiencies of the public libraries in Seoul District area, and the results show that the proposed approach can provide meaningful information to improve discernment of the DMUs while using less number of input factors (and less information). The proposed method can be effectively used in the situation where the number of the DMUs to be considered is relatively small compared to the number of available input and output factors, which usually lessens the power to identify the inefficient units in DEA.
Emerging technologies have significant implications in establishing competitive advantages and are characterized by continuous rapid development. Efficient benchmarking is more and more important in the development of emerging technologies. Similar input level and importance are two necessary criteria need to be considered for emerging technology's benchmarking. In this study, we proposed a sequential use of self-organizing map(SOM), data envelopment analysis(DEA) and analytical hierarchy process(AHP) method for the stepwise benchmarking of emerging technology. The proposed method uses two-level SOM to cluster the emerging technologies with similar required input levels together, then, in each cluster, uses DEA-BCC model to evaluate the efficiencies of the emerging technologies and do tier analysis to form tiers. On each tier, AHP rating method is used to calculate each emerging technology's importance priority. The optimal benchmarking path of each cluster is established by connecting the emerging technologies with the highest importance priority. In order to validate the proposed method, we apply it to a case of biotechnology. The result shows the proposed method can overcome difficulties in benchmarking, select suitable benchmarking targets and make the benchmarking process more efficient and reasonable.
Purpose: This study proposed a DEA (Data Envelopment Analysis)-based stepwise benchmarking target selection for inefficient DMU (Decision Making Unit) to improve its efficiency gradually to reach most efficient frontier considering resource (DEA inputs and outputs) improvement preferences. Methods: The proposed method proceeded in two steps. First step evaluates efficiency of DMUs by using DEA, and an evaluated DMU selects benchmarking targets of HCU (Hypothesis Composit Unit) or RU (Real Unit) considering resource improvement preferences. Second step selects stepwise benchmarking targets of the inefficient DMU. To achieve this, this study developed a new DEA model, which can select a benchmarking target of an inefficient DMU in considering inputs or outputs improvement preference, and suggested an algorithm, which can select stepwise benchmarking targets of the inefficient DMU. Results: The proposed method was applied to 34 international ports for validation. In efficiency evaluation, five ports was evaluated as most efficient port, and the remaining 29 ports was evaluated as relative inefficient port. When port 34 was supposed as evaluated DMU, its can select its four stepwise benchmarking targets in assigning the preference weight to inputs (berth length, total area of pier, CFS, number of loading machine) as (0.82, 1.00, 0.41, 0.00). Conclusion: For the validation of the proposed method, it applied to the 34 major ports around the world and selected stepwise benchmarking targets for an inefficient port to improve its efficiency gradually. We can say that the proposed method enables for inefficient DMU to establish more effective and practical benchmarking strategy than the conventional DEA because it considers the resource (inputs or outputs) improvement preference in selecting benchmarking targets gradually.
The purpose of this paper is to show the empirical measurement way of operation risk evaluation in domestic seaports for overcoming the limitations which the traditional DEA method has by using 13 Korean ports in 2003 for 4 inputs(birthing capacity, cargo handling capacity, number of coastal guard vessel, number o f coastal special guard vessel ) and 5 outputs(Export and Import Quantity, Number of Ship Calls, number of coastal accident, number of coastal crime, number of coastal pollution). Because traditional DEA method has produced the limited set of information, negative DEA mixed with tier, stratification and layering methods should be adopted. The goal of negative DEA is to set up DEA models that will place the poor operating ports on or close to the empirical frontier. The core empirical results of this paper are as follows. First, Donghae ports should benchmark the operation way of Yeasu, Busan, Woolsan ports in terms of the middle and longterm base. Second, 5 ports(ports of Taean, Yeasu, Tongyoung, Busan, Sokcho) which were revealed as the poor operating ports in Negative DEA analysis should benchmark Incheon, Woolsan, Pohan, and Donhae ports. The policy implication to the Korean seaports and planners is that Korean seaports should introduce the new methods like Negative DEA of this paper for predicting the poor operating in the ports.
This study analyzed the managerial efficiency of 11 organizations, the branch centers of a occupational health service organization in Korea, using the Data Envelopment Analysis (DEA) method. The DEA is a good method for evaluating health services since it can handle multiple inputs and outputs simultaneously, and also identify the sources and amount of inefficiency. The author approached this study using two efficient models: the monetary value model and the real value model. The DEA method based on the monetary value model included cost factors, while the real value model excluded cost factors. The input variables used were manpower of physicians, medical technicians, nurses, industrial hygienists and administrators; labor, maintenance, and material expenses. The output variables used were the number of medical examinations, workplace evaluations, group health management services and income from each service. The major results were as follows: First, in the monetary value model, 6 out of 11 organizations (54.6%) showed an efficiency score of 1.0, which means that they have been operating in very efficient ways. However, 5 organizations (46.4%) showed themselves to be relatively inefficient. Second, in the real value model, 7 out of 11 organizations (63.4%) showed an efficiency score of 1.0, which means they have been operating efficiently, while 4 organizations (46.4%) showed themselves to be relatively inefficient. Third, the reliability of DEA method were analyzed by comparing the results of the monetary value model and real value model. The results of 8 out of 11 organizations were same in terms of being efficient or not. Thus, the DEA could be a valid application method for occupational health service organizations. Fourth, the organizations that displayed common inefficiency in both the monetary value model and in the real value model 3, 9, and 10, were also considered to be managed inefficiency from expertise opinion. In summary, this study evaluated the efficiency of occupational health service organizations applying the DEA method with different variables, and found that the results of analysis could be valid in terms of both modeling and expert sense. In the future, the DEA method will be used as a useful tool to identify and evaluate the efficiency of occupational health service organizations through more applications and refinements.
Kim Bum-Soo;Chang Tai-Woo;Shin Ki-Tae;Park Jin-Woo
Journal of Korean Society of Industrial and Systems Engineering
/
v.28
no.2
/
pp.18-26
/
2005
The balanced scorecard(BSC) overcomes the limit of traditional financial statement that focuses on only financial performance. BSC is widely used in government and industry because of the clear representation of the relationship and logic between the key performance indicators(KPI) of 4 perspectives - financial, customer, internal process, and loaming and growth. However, traditional BSC does not consider evaluating the difference between the results measured by BSC. By using relatively small number of inputs and outputs In comparing decision-making units, data envelopment analysis(DEA) can aggregate multiple performance measures. In this research, we propose a methodology named CDB(Combined DEA and BSC) to evaluate the performance of organization considering financial and non-financial perspectives. CDB uses KPI of cause-and-effect relationship on BSC as inputs and outputs of DEA method. In addition, this research proposes a method of converting the KPI of BSC to the input and output variables of DEA, and enhancing discrimination power using the limit number of variables. We illustrate the methodology by giving an example of evaluating aquisition-unit efficiency in a supply chain.
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.5B
/
pp.364-378
/
2008
Data Envelopment Analysis(DEA) models can be used for performance evaluation on governmental funding projects for IT small and medium-sized enterprises associated with multiple-outputs/multiple-inputs. In order to enhance the accuracy of DEA efficiency scores, DEA models with exogenously fixed variables are required where the corporate competency is taken into account. Additionally, it is necessary to use multiple DEA basic as well as extended models so as to relax the restriction on the performance evaluation to relying on a single DEA model. In this study; 1)a DEA data structure is designed including exogenously fixed variables representing corporate asset, revenue and the number of employees at the point in time that the governmental funding project concerned is initiated; 2)DEA basic as well as extended models are established according to the DEA data structure presented abovementioned; and 3)a case study is illustrated with an empirical testbed dataset. As for the DEA basic models, CCR, BCC, Super-efficiency model are adopted. The DEA extended models are developed based on the models associated with noncontrollable and nondiscretionary variables. In the case study, it is explained a comparison of DEA models and also major numerical outcomes such as efficiency scores, ranks derived from each DEA model are integrated using Analytic Hierarchy Process(AHP) weights. Performance significance with DEA efficiency scores between technical categories are tested based not only on parametric but also nonparametric single-factor analysis of variance method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.