• Title/Summary/Keyword: DDH problem

Search Result 6, Processing Time 0.022 seconds

Ciphertext-Policy Attribute-Based Encryption with Hidden Access Policy and Testing

  • Li, Jiguo;Wang, Haiping;Zhang, Yichen;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3339-3352
    • /
    • 2016
  • In ciphertext-policy attribute-based encryption (CP-ABE) scheme, a user's secret key is associated with a set of attributes, and the ciphertext is associated with an access policy. The user can decrypt the ciphertext if and only if the attribute set of his secret key satisfies the access policy specified in the ciphertext. In the present schemes, access policy is sent to the decryptor along with the ciphertext, which means that the privacy of the encryptor is revealed. In order to solve such problem, we propose a CP-ABE scheme with hidden access policy, which is able to preserve the privacy of the encryptor and decryptor. And what's more in the present schemes, the users need to do excessive calculation for decryption to check whether their attributes match the access policy specified in the ciphertext or not, which makes the users do useless computation if the attributes don't match the hidden access policy. In order to solve efficiency issue, our scheme adds a testing phase to avoid the unnecessary operation above before decryption. The computation cost for the testing phase is much less than the decryption computation so that the efficiency in our scheme is improved. Meanwhile, our new scheme is proved to be selectively secure against chosen-plaintext attack under DDH assumption.

COMPRESS MULTIPLE CIPHERTEXTS USING ELGAMAL ENCRYPTION SCHEMES

  • Kim, Myungsun;Kim, Jihye;Cheon, Jung Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.361-377
    • /
    • 2013
  • In this work we deal with the problem of how to squeeze multiple ciphertexts without losing original message information. To do so, we formalize the notion of decomposability for public-key encryption and investigate why adding decomposability is challenging. We construct an ElGamal encryption scheme over extension fields, and show that it supports the efficient decomposition. We then analyze security of our scheme under the standard DDH assumption, and evaluate the performance of our construction.

Security Proof for a Leakage-Resilient Authenticated Key Establishment Protocol

  • Shin, Seong-Han;Kazukuni Kobara;Hideki Imai
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.75-90
    • /
    • 2004
  • At Asiacrypt 2003, Shin et al., have proposed a new class for Authenticated Key Establishment (AKE) protocol named Leakage-Resilient AKE ${(LR-AKE)}^{[1]}$. The authenticity of LR-AKE is based on a user's password and his/her stored secrets in both client side and server side. In their LR-AKE protocol, no TRM(Tamper Resistant Modules) is required and leakage of the stored secrets from $.$my side does not reveal my critical information on the password. This property is useful when the following situation is considered :(1) Stored secrets may leak out ;(2) A user communicates with a lot of servers ;(3) A user remembers only one password. The other AKE protocols, such as SSL/TLS and SSH (based or PKI), Password-Authenticated Key Exchange (PAKE) and Threshold-PAKE (T-PAKE), do not satisfy that property under the above-mentioned situation since their stored secrets (or, verification data on password) in either the client or the servers contain enough information to succeed in retrieving the relatively short password with off-line exhaustive search. As of now, the LR-AKE protocol is the currently horn solution. In this paper, we prove its security of the LR-AKE protocol in the standard model. Our security analysis shows that the LR-AKE Protocol is provably secure under the assumptions that DDH (Decisional Diffie-Hellman) problem is hard and MACs are selectively unforgeable against partially chosen message attacks (which is a weaker notion than being existentially unforgeable against chosen message attacks).

Global Path Planning for Autonomous Underwater Vehicles in Current Field with Obstacles (조류와 장애물을 고려한 자율무인잠수정의 전역경로계획)

  • Lee, Ki-Young;Kim, Su-Bum;Song, Chan-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with the global path planning problem for AUVs (autonomous underwater vehicles) in a tidal current field. The previous researches in the field were unsuccessful at simultaneously addressing the two issues of obstacle avoidance and tidal current-based optimization. The use of a genetic algorithm is proposed in this paper to move past this limitation and solve both issues at once. Simulation results showed that the genetic algorithm could be applied to generate an optimal path in the field of a tidal current with multiple obstacles.

Group Key Exchange over Combined Wired and Wireless Networks

  • Nam, Jung-Hyun;Won, Dong-Ho
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.461-474
    • /
    • 2006
  • A group key exchange protocol is a cryptographic primitive that describes how a group of parties communicating over a public network can come up with a common secret key. Due to its significance both in network security and cryptography, the design of secure and efficient group key exchange protocols has attracted many researchers' attention over the years. However, despite all the efforts undertaken, there seems to have been no previous systematic look at the growing problem of key exchange over combined wired and wireless networks which consist of both stationary computers with sufficient computational capabilities and mobile devices with relatively restricted computing resources. In this paper, we present the first group key exchange protocol that is specifically designed to be well suited for this rapidly expanding network environment. Our construction meets simplicity, efficiency, and strong notions of security.

Group Key Agreement Protocols for Combined Wired/Wireless Networks (유무선 통합 네트워크 환경에 적합한 그룹 키 동의 프로토콜)

  • Nam Junghyun;Kim Seungjoo;Won Dongho;Jang Chungryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.607-615
    • /
    • 2005
  • Group key agreement protocols are designed to allow a group of parties communicating over a public network to securely establish a common secret key. Over the years, a number of solutions to this problem have been proposed with varying degrees of complexity. However, there seems to have been no previous systematic look at the growing problem of key agreement over combined wired/wireless networks, consisting of both high-performance computing machines and low-power mobile devices. In this paper we present an efficient group key agreement scheme well suited for this networking environment. Our scheme meets efficiency, scalability, and all the desired security requirements.