• Title/Summary/Keyword: DCXD(Double Crystal X-ray Diffraction)

Search Result 82, Processing Time 0.022 seconds

Growth and temperature dependence of energy band gap for $CuAISe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막의 성장과 에너지 밴드갭의 온도 의존성)

  • Yun, Seok-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.121-122
    • /
    • 2007
  • Single crystal $CuAlSe_2$ layers were grown on thoroughly etched sem-insulating GaAs(l00) substrate at $410^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}l0^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}s$ at 293K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;155\;K)$.

  • PDF

Growth and Optoelectric Characterization of CdGa$_2$Se$_4$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한 CdGa$_2$Se$_4$ 단결정 박막 성장과 광전기적 특성)

  • 홍광준;박창선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CdGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 630$^{\circ}C$ and 420$^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CdGa$_2$Se$_4$ single crystal thin films measured from Hall erect by van der Pauw method are 8.27x10$\^$17/ cm$\^$-3/, 345 $\textrm{cm}^2$/V$.$s at 293 K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on CdGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$\_$X/) existing only high quality crystal and neutral bound exiciton (D$\^$0/,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excision were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV,

  • PDF

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한$ZnGa_{2}Se_{4}$단결정 박막 성장과 광전기적 특성)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the ZnGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa$_2$Se$_4$ single crystal thin films measured from Hall effect by van der Pauw method are 9.63x10$^{17}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively, From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa$_2$Se$_4$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr were 251.9 MeV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on ZnGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$_{x}$) existing only high quality crystal and neutral bound excition (A$^{0}$ ,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.on energy of impurity was 122 meV.

  • PDF

A Study on the chemical-mechanical polishing process of Sapphire Wafers for GaN thin film growth. (사파이어웨이퍼의 기계-화학적인 연마 가공특성에 관한 연구)

  • Nam, Jung-Hwan;Hwang, Sung-Won;Shin, Gwi-Su;Kim, Keun-Joo;Suh, Nam-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.31-34
    • /
    • 2003
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by chemical and mechanical polishing(CMP) process. The sapphire crystalline wafers were characterized by double crystal X-ray diffraction. The sample quality of sapphire crystalline wafer at surfaces has a full width at half maximum 89 arcses. The surfaces of sapphire wafers were mechanically affected by residual stress and surface default. Sapphire wafers's waveness has higher abrasion rate in the edge of the wafer than its center due to Newton's Ring interference.

  • PDF

Growth and characterization of ZnIn$_2$S$_4$ single crystal thin film using Hot Wall Epitaxy method (Hot Wall Epitaxy (W)에 의한 ZnIn$_2$S$_4$ 단결정 박막 성장과 특성)

  • 윤석진;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.266-272
    • /
    • 2002
  • The stochiometric mixture of evaporating materials for the ZnIn$_2$S$_4$ single crystal thin film was prepared from horizontal furnace. To obtain the ZnIn$_2$S$_4$ single crystal thin film, ZnIn$_2$S$_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 610 $^{\circ}C$ and 450 $^{\circ}C$, respectively and the growth rate of the ZnIn$_2$S$_4$ single crystal thin film was about 0.5 $\mu\textrm{m}$/hr. The crystalline structure of ZnIn$_2$S$_4$ single crystal thin film was investigated by photo1uminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of ZnIn$_2$S$_4$ single crystal thin film measured from Hall effect by van der Pauw method are 8.51${\times}$10$\^$17/ cm$\^$-3/, 291 $\textrm{cm}^2$/V$.$s at 293 $^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the ZnIn$_2$S$_4$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 0.0148 eV and 0.1678 eV at 10 $^{\circ}$K, respectively. From the photoluminescence measurement of ZnIn$_2$S$_4$ single crystal thin film, we observed free excition (E$\_$X/) typically observed only in high quality crystal and neutral donor bound exciton (D$^{\circ}$,X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively. The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

Growth and Optoelectrical Properties for $AgGaSe_2$ Single Crystal Thin Films ($AgGaSe_2$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.171-174
    • /
    • 2004
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at $630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is $2.1{\mu}m$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of $AgGaSe_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89{\times}10^{17}\;cm^{-3},\;129cm^2/V{\cdot}s$ at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the $AgGaSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}S_o$ and the crystal field splitting ${\Delta}C_r$ were 0.1762 eV and 0.2494 eV at 10 K, respectively. From the photoluminescence measurement of $AgGaSe_2$ single crystal thin film, we observed free excition $(E_X)$ observable only in high quality crystal and neutral bound exciton $(D^o,X)$ having very strong peak intensity And, the full width at half maximum and binding energy of neutral donor bound excition were 8 meV and 14.1 meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.

  • PDF

Growth and Characterization of $CulnSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CulnSe_2$ 박막 성장과 특성)

  • 홍광준;이상열;박진성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.445-454
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect fby van der Pauw method are 9.62x10$^{16}$ cm$^{-3}$ , 296$\textrm{cm}^2$/V.s at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film we have found that he values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 7meV and 5.9meV, respectivity. by Haynes rule, an activation energy of impurity was 50 meV.

  • PDF

Growth and optoelectrical properties for $Cd_{1-x}Zn_xS$ thin films byg Hot Wall Epitaxy method (HWE에 의한 $Cd_{1-x}Zn_xS$ 박막의 성장과 광전기적 특성)

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.304-308
    • /
    • 2004
  • The $Cd_{1-x}Zn_xS$ thin films were grown on the Si(100) wafers by a hot wall epitaxy method(HWE). The source and substrate temperature are $600^{\circ}C\;and\;440^{\circ}C$ respectively. The crystalline structure of epilayers was investigated by double crystal X-ray diffraction(DCXD). Hall effect on the sample was measured by the van der Pauw method and studied on the carrier density and mobility dependence on temperature. In order to explore the applicability as a photoconductive cell, we measured the sensitivity($\gamma$), the ratio of photocurrent to darkcurrent(pc/dc), maximum allowable power dissipation(MAPD), spectral response and response time. The results indicated that the photoconductive characteristic were the best for the $Cd_{0.53}Zn_{0.47}S$ samples annealed in Cu vapor compare with in Cd, Se, air and vacuum vapour. Then we obtained the sensitivity of 0.99, the value of pc/dc of $1.65{\times}10^7$, the MAPD of 338mW, and the rise and decay time of 9.7ms and 9.3ms, respectively

  • PDF

Growth and Optical Properties for $CdGa_2Se_4$ epilayer by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 박막 성장과 광학적 특성)

  • Hong, Myoung-Seok;Hong, Kwamg-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.125-126
    • /
    • 2006
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films. $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3}$. $345cm^2/V{\cdot}s$ at 293 K, respectively. From the photoluminescence measurement on $CdGa_2Se_4$ single crystal thin film, we observed free excition ($E_x$) existing only high quality crystal and neutral bound exiciton ($D^{\circ},X$) having very strong peak intensity. Then. the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule. an activation energy of impurity was 137 meV.

  • PDF

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $ZnGa_{2}Se_{4}$ 단결정 박막 성장과 광전기적 특성)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $ZnGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $ZnGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnGa_{2}Se_{4}$ single crystal trun films measured from Hall effect by van der Pauw method are $9.63{\times}10^{17}cm^{-3}$, $296cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c axis of the $ZnGa_{2}Se_{4}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 251.9 meV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on $ZnGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton $(A^{0},X)$ having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.

  • PDF