• Title/Summary/Keyword: DCT 기반 인트라 예측

Search Result 5, Processing Time 0.018 seconds

Effective hardware design for DCT-based Intra prediction encoder (DCT 기반 인트라 예측 인코더를 위한 효율적인 하드웨어 설계)

  • Cha, Ki-Jong;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.765-770
    • /
    • 2012
  • In this paper, we proposed an effective hardware structure using DCT-based inra-prediction mode selection to reduce computational complexity caused by intra mode decision. In this hardware structure, the input block is transformed at first and then analyzed to determine its texture directional tendency. the complexity has solved by performing intra prediction in only predicted edge direction. $4{\times}4$ DCT is calculated in one cycle using Multitransform_PE and Inta_pred_PE calculates one prediction mode in two cycles. Experimental results show that the proposed Intra prediction encoding needs only 517 cycles for one macroblock encoding. This architecture improves the performance by about 17% than previous designs. For hardware implementation, the proposed intra prediction encoder is implemented using Verilog HDL and synthesized with Megnachip $0.18{\mu}m$ standard cell library. The synthesis results show that the proposed architecture can run at 125MHz.

New Intra Coding Scheme for High-definition Video Coding (고화질 비디오 부호화를 위한 새로운 화면내 부호화 방법)

  • Heo, Jin;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.72-78
    • /
    • 2008
  • Although the H.264 video coding scheme is popular, it is not efficient for high-definition (HD) video coding because the size of its macroblock is relatively small for the HD video resolution. In this paper, we propose a new intra coding scheme based on the enlarged macroblock size. For the luminance component, intra $4{\times}4$ prediction and intra $16{\times}16$ prediction in H.264 are scaled into intra $8{\times}8$ prediction and intra $32{\times}32$ prediction, respectively. For the chrominance components, intra $8{\times}8$ prediction is extended to intra $16{\times}16$ prediction. Along with the $8{\times}8$ basic coding block size, an $8{\times}8$ integer discrete cosine transform (DCT) is used. Experimental results show that the proposed algorithm improves coding efficiency of the intra coding for HD video: PSNR gain by 0.23dB and bit-rate reduction by 5.32% on average.

Advanced Image Coding based on spacial domain prediction (공간 영역 예측에 의한 정지 영상 부호화)

  • Cho, Sang-Gyu;Moon, Joon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.425-428
    • /
    • 2005
  • This paper is made up Advanced Image Coding(AIC) that combines algorithms from next generation image coding standard, H.264/MPEG-4 Part 10 advanced video coding(AVC) and still image compression standard, JPEG(Joint Photographic Experts Group). AIC combines intra frame block prediction from H.264 with a JPEG style discrete cosine transform and quantization, followed by Context-based Adaptive Binary Arithmetic Coding(CABAC) as used in H.264. In this paper, we analyzes the efficiency of the AIC algorithm and JPEG and JPEG-2000, and it presents of result.

  • PDF

Design of video encoder using Multi-dimensional DCT (다차원 DCT를 이용한 비디오 부호화기 설계)

  • Jeon, S.Y.;Choi, W.J.;Oh, S.J.;Jeong, S.Y.;Choi, J.S.;Moon, K.A.;Hong, J.W.;Ahn, C.B.
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.732-743
    • /
    • 2008
  • In H.264/AVC, 4$\times$4 block transform is used for intra and inter prediction instead of 8$\times$8 block transform. Using small block size coding, H.264/AVC obtains high temporal prediction efficiency, however, it has limitation in utilizing spatial redundancy. Motivated on these points, we propose a multi-dimensional transform which achieves both the accuracy of temporal prediction as well as effective use of spatial redundancy. From preliminary experiments, the proposed multi-dimensional transform achieves higher energy compaction than 2-D DCT used in H.264. We designed an integer-based transform and quantization coder for multi-dimensional coder. Moreover, several additional methods for multi-dimensional coder are proposed, which are cube forming, scan order, mode decision and updating parameters. The Context-based Adaptive Variable-Length Coding (CAVLC) used in H.264 was employed for the entropy coder. Simulation results show that the performance of the multi-dimensional codec appears similar to that of H.264 in lower bit rates although the rate-distortion curves of the multi-dimensional DCT measured by entropy and the number of non-zero coefficients show remarkably higher performance than those of H.264/AVC. This implies that more efficient entropy coder optimized to the statistics of multi-dimensional DCT coefficients and rate-distortion operation are needed to take full advantage of the multi-dimensional DCT. There remains many issues and future works about multi-dimensional coder to improve coding efficiency over H.264/AVC.

DC Offset Adjusted Inter Prediction Algorithm for Improving H.264/AVC Video Coding Efficiency (H.264/AVC 동영상 압축율 향상을 위한 DC 오프셋 보정에 기반한 인터 예측 알고리즘)

  • Yoon, Dae-Il;Kim, Hae-Kwang
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.793-796
    • /
    • 2011
  • H.264/AVC compresses video data by applying DCT transform, quantization and entropy coding processes to the residual signal obtained by inter/intra prediction. This paper proposes a method enhancing an existing DC offset adjustment technology which uses information of neighboring blocks to reduce residual information for improving coding efficiency. DC offset information is not sent over bitstreams, but calculated in the same way both in the decoder and in the encoder. Experimental results show that the proposed method enhances coding efficiency by 0.25% in average BD-Rate compared to H.264/AVC and gives better or worse coding efficiency compared to the existing DC offset method depending on video sequences with coding efficiency degradation by 0.09% in average BD-Rate. This experimental results also show that further coding efficiency improvement is possible by applying the proposed method adaptively to slice or macroblock coding units.