• Title/Summary/Keyword: DCGL

Search Result 15, Processing Time 0.037 seconds

The effect of sensitive and non-sensitive parameters on DCGL in probability analysis for decommissioning of nuclear facilities

  • Hyung-Woo Seo;Hyein Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3559-3570
    • /
    • 2023
  • In the decommissioning of nuclear facilities, Derived Concentration Guideline Level (DCGL) derivation is necessary for the release of the facility after the site remediation, which also needs to be implemented in the stage of establishing a decommissioning planning. In order to derive DCGL, the dose assessment for the receptors can be conducted from residual radioactivity by using RESRAD code. When performing sensitivity analysis on probabilistic parameters, secondary evaluation is performed by assigning a single value for parameters classified as sensitive. However, several options may arise in the handling of nonsensitive parameters. Therefore, we compared the results of the first execution of RESRAD applying probabilistic parameters for each scenario with the results of the second execution applying a single value to sensitive parameters among the probabilistic parameters. In addition, we analyzed the effect of setting options for non-sensitive parameters. As a result, the effect on DCGL were different depending on the application scenario, the target radionuclides, and the input parameter selections. In terms of the overall evaluation period, the DCGL graph of the default option was generally shown as the most conservative except for some radionuclides. However, it will not necessarily be given priority in the aspect of the need to reflect site characteristics. The reason for selecting a probabilistic parameter is the availability of the parameter and the uncertainty of applying a single value. Therefore, as an alternative, it can be consistently applied to distribution as an option for non-sensitive parameters after sensitivity analysis.

A study on DCGL determination and the classification of contaminated areas for preliminary decommission planning of KEPCO-NF nuclear fuel fabrication facility

  • Cho, Seo-Yeon;Kim, Yong-Soo;Park, Da-Won;Park, Chan-Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1951-1956
    • /
    • 2019
  • As a part of the preliminary decommissioning plan of KEPCO-NF fuel fabrication facility, DCGLs of three target radionuclides, 234U, 235U, and 238U, were derived using RESRAD-BUILD code and contaminated areas of the facility were classified based on contamination levels from the derived DCGLs. From code simulations, one-room modeling results showed that the grinding room in building #2 was the most restrictive (DCGLgross = 10493.01 Bq/㎡). The DCGLgross results in contaminated areas from one-room modeling were slightly more conservative than three-room modeling. Prior to the code simulation, field survey and measurements conducted by each survey unit. For a conservative approach, the most restrictive DCGLgross in each survey unit was taken as a reference to classify the contaminated areas of the facility. Accordingly, seven rooms and 37 rooms in the nuclear-fuel buildings were classified as Class 1 and Class 2, respectively. As expected, fuel material handling and processing rooms such as the grinding room, sintering room, compressing room, and powder collecting room were included in the Class 1 area.

Preliminary ALARA residual radioactivity levels for Kori-1 decommissioning and analysis of results and effects of remediation area

  • Seo, Hyung-Woo;Yu, Ji-Hwan;Kim, Gi-Lim;Son, Jin-Won
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1136-1144
    • /
    • 2022
  • The effects of nearby residents and the public by the residual contamination from the decommissioning of nuclear facilities should comply with the dose criteria, and whether additional remediation action is necessary from the ALARA perspective must be determined. Therefore, we analyzed the requirements of ALARA action levels and performed preliminary ALARA evaluation. The ratio of residual contamination concentration to DCGL was calculated for the basement fill and the building occupancy mode. The results showed that the additional remediation actions below DCGL are not justified. In addition, we analyzed the effect of remediation area. It was noted that the increase of the remediation area showed a positive correlation with the Conc/DCGL value in the basement fill mode. On the other hand, in the building occupancy mode, since the floor area of the building is the target of remediation and has the effect of increasing the same as the evaluation area of the building occupants, but due to the difference in the amount of increase, the Conc/DCGL showed a negative correlation. We expect the approach and method of ALARA evaluation can be utilized for concrete cost-benefit calculation during the decommissioning or at the time of remediation.

An Analysis on the DCGL setting Method of the United States for Demonstrating Nuclear Power Plants Site Release Criteria (국내 원전 부지 해제 기준 준수 입증을 위한 미국의 유도농도기준(DCGL) 설정 방법에 대한 분석)

  • Jeon, Yeo Ryeong;Park, Sang June;Ahn, Seokyoung;Lee, Jong Seh;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The U.S. NRC establishes a radiological criteria with regard to restricted or unrestricted use of nuclear plant site after decommissioning in NUREG-1757. According to this, a nuclear plant site can be released in a restricted way or unrestricted way only if a licensee demonstrates that the dose criteria is fulfilled after the site decontamination and remediation. In order to prove compliance with the radiological criteria of site release, LTP(License Termination Plan) must include the site release criteria, site characterization, final survey plan with major radionuclides and DCGL(Derived Concentration Guideline Levels), etc. Based on the decommissioning case of Rancho Seco nuclear power plant in the United States, this paper analyzed a method of setting the DCGL that can be applied to Kori NPP Unit 1 which will be permanently disabled in 2017.

Designation the Gray Region and Evaluating Concentration of Radionuclide in Kori-1 by Using Derived Concentration Guideline Level (고리 1호기의 잔류방사능 유도농도(DCGL)를 적용한 회색영역 설정과 핵종농도평가)

  • Jeon, Yeo Ryeong;Park, Sang June;Ahn, Seokyoung;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.297-304
    • /
    • 2018
  • U.S. nuclear power plant decommissioning guidelines(MARSSIM and MARLAP) are recommends to use DQOs when planning and conducting site surveys. The DQOs which is constructed in the site survey planning stage provide a way to make the best use of data. It helps we can get the important information and data to make decisions as well. From fifth to seventh steps of DQOs are the process of designing a site survey by using the collected data and information in the previous step to make reasonable and reliable decisions. The gray region that is set up during this process is defined as the range of concentrations where the consequences of type II decision errors are relatively small. The gray region can be set using DCGL and the average concentration of radionuclide in the sample collected at the survey unit. By setting up the gray region, site survey plan can be made most resource-efficient and the consequences on decision errors can be minimized. In this study, we set up the gray region by using the DCGL of Kori-1 which was derived from the previous research. In addition, we proposed a method to assess the concentration of radionuclide in samples for making decisions correctly.

Derivation of preliminary derived concentration guideline level (DCGL) by reuse scenario for Kori Unit 1 using RESRAD-BUILD

  • Park, Sang June;Byon, Jihyang;Ban, Doo Hyun;Lee, Suhee;Sohn, Wook;Ahn, Seokyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1231-1242
    • /
    • 2020
  • The Kori Unit 1 will be decommissioned after a permanent shutdown in June 2017. South Korea has a 0.1 mSv/yr exposure limit standard for limited or unlimited site release. This is South Korea's first commercial NPP; therefore, if the containment building is reused as a memorial hall, it will contribute to the improvement of public understanding and enhance the public's acceptance of NPPs. Also, existing Kori Unit 1 nuclear power plant manpower resources can be reused after decommissioning and resident staff and memorial hall visitors can activate nearby commercial areas. Therefore, such a reuse scenario may also prevent an economic recession. The exposure dose was calculated using the following scenarios: worker in the containment building, visitor in the containment building, and worker in buildings other than the containment building. The exposure dose in the buildings was calculated by the RESRAD-BUILD developed by the Argonne National Laboratory (ANL). The preliminary exposure dose and derived concentration guideline level (DCGL) were derived.