• 제목/요약/키워드: DC-link voltage ripple

검색결과 126건 처리시간 0.025초

Two Modified Z-Source Inverter Topologies - Solutions to Start-Up Dc-Link Voltage Overshoot and Source Current Ripple

  • Bharatkumar, Dave Heema;Singh, Dheerendra;Bansal, Hari Om
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1351-1365
    • /
    • 2019
  • This paper proposes two modified Z-source inverter topologies, namely an embedded L-Z-source inverter (EL-ZSI) and a coupled inductor L-Z source inverter (CL-ZSI). The proposed topologies offer a high voltage gain with a reduced passive component count and reduction in source current ripple when compared to conventional ZSI topologies. Additionally, they prevent overshoot in the dc-link voltage by suppressing heavy inrush currents. This feature reduces the transition time to reach the peak value of the dc-link voltage, and reduces the risk of component failure and overrating due to the inrush current. EL-ZSI and CL-ZSI possess all of the inherent advantages of the conventional L-ZSI topology while eliminating its drawbacks. To verify the effectiveness of the proposed topologies, MATLAB/Simulink models and scaled down laboratory prototypes were constructed. Experiments were performed at a low shoot through duty ratio of 0.1 and a modulation index as high as 0.9 to obtain a peak dc-link voltage of 53 V. This paper demonstrates the superiority of the proposed topologies over conventional ZSI topologies through a detailed comparative analysis. Moreover, experimental results verify that the proposed topologies would be advantageous for renewable energy source applications since they provide voltage gain enhancement, inrush current, dc-link voltage overshoot suppression and a reduction of the peak to peak source current ripple.

DC Link 전압 합성을 이용한 동기형 릴럭턴스 전동기 토크 제어 (Torque Control of Synchronous Reluctance Motor using DC Link voltage Synthesis)

  • 김승주;안준선;김기찬;고성철;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.19-21
    • /
    • 2006
  • This paper presents the control method that inverter output keeps to linear to reference voltage of Synchronous Reluctance Motor using DC Link voltage Synthesis. The Inverter output voltage cannot be displayed to linear about inverter reference voltage if Real DC Link voltage is different from DC Link voltage of PWM amplitude. Also, the overmodulation that there is linearity broken if reference voltage is out of range that inverter can output voltage. Torque ripple generates the vibration and noise of a motor. This paper proposes the control method so that torque ripple decreases and the linearity of inverter output keeps using the DC Link voltage Synthesis.

  • PDF

입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법 (Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation)

  • 선다운;정재헌;노의철;정규범
    • 전력전자학회논문지
    • /
    • 제21권5호
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

DC link 전압리플과 환류 다이오드를 고려한 스위치드 릴럭턴스 전동기의 특성 해석 (The Characteristic Analysis of Switched Reluctance Motor Considering DC Link Voltage Ripple and Freewheeling diodes)

  • 이승준;최재학;임성엽;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.872-874
    • /
    • 2004
  • This paper presents a charcteristcic analysis switched reluctance motor (SRM) considering hard chopping and DC link voltage ripple by using time-stepped voltage source finite element method in which the magnetic field is combined with drive circuit. We also examine the influence of freewheeling diodes and DC link voltage ripple on the performance of the SRM such as torque ripples and radial force on the surface of the teeth The freewheeling diodes and DC link voltage ripples must be taken into account in predicted the performance of SRM

  • PDF

3상 인버터 시스템에서 주파수 특성을 고려한 필름 콘덴서의 DC-link 적용 방법에 관한 연구 (The study on DC-link Film Capacitor in 3 Phase Inverter System for the Consideration of Frequency Response)

  • 박현수
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.117-122
    • /
    • 2018
  • 대용량 3상 시스템 에어컨은 최근 들어 소비 전력 저감을 위해 인버터 회로를 포함하고 있다. 인버터 회로는 교류를 다이오드를 통해 정류하고 DC-link 전원부 콘덴서에 의해 평활된 직류를 사용한다. 이 때 평활에 사용되는 DC-link 전원부 콘덴서는 전압 리플, 전류 리플 조건을 만족하기 위해 전해 콘덴서가 일반적으로 사용된다. 콘덴서의 용량을 줄이게 되면 회로부의 크기 및 무게, 비용을 줄일 수 있게 된다. 본 논문에서는 최소점 추정 PPL(Phase Locked Loop) 위상 제어와 평균 전압 d축 전류제어 기법을 조합하여 입력 리플 전류를 약 90% 저감하는 알고리즘을 제안한다. 입력 리플 전류의 감소로 인해 DC-link 콘덴서의 전류 리플도 감소하므로 콘덴서의 용량을 줄일 수 있지만 전해 콘덴서의 경우 등가 직렬 저항(ESR : Equivalent Series Resistance)이 크기 때문에 발열로 인한 수명이 한계를 가진다. 본 논문에서는 전해 콘덴서 대신 DC-link 단에 전류 리플을 고려한 필름 콘덴서를 선정하는 방법을 제안한다. 필름 콘데서의 정전 용량 선정, 내압 선정, RMS(Root Mean Square) 전류 용량, RMS 전류 주파수 해석을 고려해 콘덴서의 용량을 선정할 경우 1680uF의 전해 콘덴서를 20uF로 용량을 낮추어 설계함으로써 전원부 콘덴서의 크기 및 무게, 비용을 줄였으며 전동기 구동을 통해 동작을 확인하였다.

단상 계통연계형 태양광 발전 시스템의 직류링크 맥동전압 보상 (DC link Ripple Voltage Compensation of a Single-phase Grid-Connected PV System)

  • 이재근;최종우
    • 전력전자학회논문지
    • /
    • 제17권5호
    • /
    • pp.377-387
    • /
    • 2012
  • A single-phase grid-connected PV system is known as suitable for housing of less than 3 kW. The DC link voltage in a single-phase PV system has necessarily twice component of fundamental wave. It makes high THD in the grid current. According to the problem, power quality is lower. Many engineers have studied about this problem. The most simple method is to use low pass filter on DC link voltage control. However it is affected by DC link voltage control bandwidth. If cutoff frequency is reduced to increase the performance of low pass filter, it also lowers DC link voltage control bandwidth. Second method is using band stop filter, it works good on steady state but not good on transient state. This paper proposes the new method for removing ripple voltage to get an exact current reference. It improves the responses on steady state and transient state. The performance was verified through computer simulation using MATLAB and actual experiments.

B4 인버터의 제어성능 향상을 위한 전압보상 기법 (A Voltage Compensation Method to Improve the Control Performance for B4 Inverters)

  • 오재윤
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.317-320
    • /
    • 2000
  • This paper proposes a voltage compensation method to improve the control performance of B4 inverter which is studied for low-cost drive systems. The B4 inverter employs only four switches and it has a center-tapped connection in the split dc-link capacitors to one phase of a three-phase motor. In the B4 topology unbalan-cd three-phase voltages will be generated by the dc link voltage ripple. To solve this problem we present a voltage compensation method which adjusts switching times considering dc link voltage ripple. The proposed method is verified by simulation results,

  • PDF

Four-Switch 인버터의 전압 변동 보상 기법을 통한 전동기 운전 기법 (Motor Control Method for Four-Switch Inverters with DC-link Voltage Ripple Compensation Algorithm)

  • 이동명
    • 조명전기설비학회논문지
    • /
    • 제27권7호
    • /
    • pp.59-66
    • /
    • 2013
  • This paper proposes a new voltage reference generation method for Four-Switch Inverters(FSI) with compensation of the neutral DC-link voltage variation. Since FSIs have the split DC-link causing the inherent problem of voltage fluctuations in the upper and lower capacitors, it is required to take account the voltage difference between the top and bottom capacitors. In this paper, to reduce the effect by the voltage variation, reference voltages are modified by adding compensation voltages proportional to the voltage difference between upper and lower capacitors. Simulation results showing control performance of induction and permanent magnet motors demonstrate the validity of the proposed method.

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

Reduction of Output Voltage Ripples in Single-Phase PWM Rectifier with Active Power Decoupling Circuit

  • Nguyen, Hoang-Vu;Lee, Dong-Choon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.419-420
    • /
    • 2015
  • In this paper, a low-cost single-phase PWM rectifier with small DC-link capacitors is proposed, where a buck-boost converter with a low power rating is added at the DC link. By controlling the auxiliary circuit so as to absorb the voltage ripple in the DC link, the second-order voltage ripple in DC-link capacitor can be reduced significantly. Therefore, a small film capacitor can be utilized to replace the bulky electrolytic capacitors. The simulation results are shown to verify the validity of the proposed method.

  • PDF