• Title/Summary/Keyword: DC-link

Search Result 1,020, Processing Time 0.02 seconds

A 5-Gb/s Continuous-Time Adaptive Equalizer (5-Gb/s 연속시간 적응형 등화기 설계)

  • Kim, Tae-Ho;Kim, Sang-Ho;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • In this paper, a 5Gb/s receiver with an adaptive equalizer for serial link interfaces is proposed. For effective gain control, a least-mean-square (LMS) algorithm was implemented with two internal signals of slicers instead of output node of an equalizing filter. The scheme does not affect on a bandwidth of the equalizing filter. It also can be implemented without passive filter and it saves chip area and power consumption since two internal signals of slicers have a similar DC magnitude. The proposed adaptive equalizer can compensate up to 25dB and operate in various environments, which are 15m shield-twisted pair (STP) cable for DisplayPort and FR-4 traces for backplane. This work is implemented in $0.18-{\mu}m$ 1-poly 4-metal CMOS technology and occupies $200{\times}300{\mu}m^2$. Measurement results show only 6mW small power consumption and 2Gbps operating range with fabricated chip. The equalizer is expected to satisfy up to 5Gbps operating range if stable varactor(RF) is supported by foundry process.

Implemention of a DTIF Controller for Robust Drive of a 3 Phase Induction Motor in High-Speed Elevator (고속 엘리베이터에서 3상 유도전동기의 강건한 구동을 위한 DTIF 제어기의 구현)

  • 김동진;강창수;한완옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.3
    • /
    • pp.88-96
    • /
    • 1995
  • High speed elevator requires precise drive included in zero speed at start/stop drive for the high stability and controllability. The vector control techniques, which have been used for the precise operation of induction motor, can be divided into two classes; The indirect vector control by slip frequency and the direct vector control by field orientation. The existing direct vector control technique has a robustness against the change of motor parameter and the existing indirect vector control technique has a strength of control ability in the wide speed range comparatively. This study presents the DTIF (Direct Torque Indirect Flux) controller which has robust movement in the transition state and in about zero and low speed using the control technique in which torque is controlled by the direct vector technique and flux is controled by indirect vector technique. The proposed system is verified by simulation and experiment for driving 3 phase induction motor. The process of transition which is from about zero speed and low speed to high speed is compared and measured to specification of phase voltage, phase current and DC link current. It is verified that DTIF controller show robust and stable speed variation.

  • PDF

Boost Converter Embedded Battery Charging Function for Application of E-bike (전기자전거 응용을 위한 배터리 충전 기능 내장형 부스트 컨버터)

  • Kim, Da-Som;Kim, Sang-Yeon;Kang, Kyung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2016
  • In the conventional E-bike, a 42 V/10 A Li-ion battery drives a 24 V/10 A BLDC motor via a 6-switch PWM DC/AC inverter. The major problems of the conventional battery-fed motor drive systems are listed as follows. To charge the battery, an external battery charger (adapter) is required, which degrades the portability of E-bike users. In addition, given the high-frequency operation of the motor drive inverter, the switching losses are significant, which degrades the whole power efficiency. High-voltage batteries (42 V) require a complex battery management system (BMS), which degrades the reliability of the battery pack. In this paper, an embedded boost-converter battery charger for E-bikes is proposed. The variable output boost converter, which converts 16.8 V battery voltage to the required variable voltage of the inverter input, can use a low-voltage battery and thus improve the reliability of batteries. By varying the inverter input voltage via boost converter, a DC link voltage control method can be applied to reduce the switching frequency of the inverter, which improves the whole power efficiency. Given that the function of a flyback charger is integrated in the proposed boost converter, the portability of the E-bike user can be maximized by excluding an external adapter. The validity of the proposed circuit will be confirmed by operation mode analysis and simulation. Moreover, experimental results of integrative charger using Li-ion battery and 200 W motor test will be showed with a prototype sample as well.

Air-Conditioner Power Source Device to Meet the Harmonic Guide Lines (고조파 규제값에 적합한 에어컨 전원장치)

  • Mun, Sang-Pil;Park, Yeong-Jo;Seo, Gi-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.581-586
    • /
    • 2002
  • To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage-doubler diode rectifiers. In the conventional voltage-doubler rectifier circuit, relatively large capacitors are used to boost the output voltage, while the proposed circuit uses smaller ones and a small reactor not to boost the output voltage but improve the input current waveform. A circuit design method is shown by experimentation and confirmed simulation. The experimental results of the proposed diode rectifier satisfies the harmonic guide lines. A high input power factor of 97(%) and an efficiency of 98[%] are also obtained. The new rectifier with no controlled switches meet the harmonic guide lines, resulting in a simple, reliable and low-cost at-to dc converters in comparison with the boost-type current-improving circuits. This paper proposes a nonlinear impedance circuit composed by diodes and inductors or capacitors. This circuit needs no control circuits and switches, and the impedance value is changed by the polarity of current or voltage. And this paper presents one of these applications to improve the input current of capacitor input diode rectifiers. The rectifier using the nonlinear impedance circuit is constructed with four diodes and four capacitors in addition to the conventional rectifiers, that is, it has eight diodes and five capacitors, including a DC link capacitor. It makes harmonic components of the input current reduction and the power factor improvement. Half pulse-width modulated (HPWM) inverter was explained compared with conventional pulse width modulated(PWM) inverter. Proposed HPWM inverter eliminated dead-time by lowering switching loss and holding over-shooting.

Parallel Operation of Voltage Source Inverters by Using Stator Windings of High Power Three-Phase Induction Motors (대전력 3상 유도전동기의 고정자권선을 이용한 전압원 인버터의 병렬운전)

  • 김인동;노의철;전성즙
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.815-820
    • /
    • 2004
  • The parallel operation of voltage source inverters using stator windings of high power three-phase induction motors was proposed in this paper. Most current high power induction motors with more than 4 electric poles have their external terminals installed so that windings of each phase can be approached from the outside. High power induction motors can be driven by parallel-operating several voltage source inverters through these external terminals. This way, in case a certain inverter breaks down, the operation torque will get decreased but the system can maintain its operation with the other inverters, so it can cope more effectively with breakdowns. Moreover, by providing phase difference to the switching movements of each inverter, it can increase equivalent switching frequency, which helps achieve good characteristics such as the reduction in the ripple of output torque, the reduction in the ripple of input current, and the reduction in the size of DC capacitors. Besides, since power is divided into each inverter, it can also decrease the ifluence of EMI occurring in the system. The characteristics of the proposed method were proved through computer simulations in this paper.

Observation and Compensation of Voltage Distortion of PWM VSI for PMSM using Adaptive Control Method (영구자석 동기전동기 구동을 위한 전압원 인버터의 적응제어기법을 이용한 전압 왜곡 관측 및 보상)

  • Kim Hag-Wone;Youn Myung-Joong;Kim Hyun-Soo;Cho Kwan-Youl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.52-60
    • /
    • 2005
  • Generally, a voltage difference or voltage distortion exists between the reference voltage and the practical voltage applied to a motor in a pulse width modulated(PWM) voltage source inverter(VSI). This voltage distortion varies with the operating conditions such as the temperature, DC link voltage, and phase current level. Also the voltage distortion affects the machine current distortion, torque pulsations, and control performance. In this paper, the voltage distortion in a PWM VSI is analyzed and a new on-line estimation method based on the model reference adaptive system(MRAS) is proposed to compensate the time varying voltage distortion, while considering the parameter variations for a permanent magnet synchronous motor (PMSM). The simulation and experimental results show the effectiveness of the proposed voltage difference observer and the compensation method.

An Implementation of a Current Controlled Bi-directional Inverter with ZVT Switching (ZVT 스위칭 되는 전류제어형 양방향 인버터의 구현)

  • 李 星 龍;高 晟 勳;金 成 佑
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.129-136
    • /
    • 2002
  • A single-phase inverter using a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is presented. It Is shown that the ZACE(Zero Average Current Error) algorithm based Polarized ramptime current control can provide a suitable interface between DC link of diode bridge-type resonant circuit and the inverter. The current control algorithm is analyzed about how to design the circuit with auxiliary switch which can ZVT operation for the main power switch. The simulation and experimental results would be shown to verify the proposed current algorithm, because the main Power switch is turn on with ZVT and the hi-directional inverter is operated.

A Study on Optimized PWM Strategy to Improve Output Voltage Quality of HEP System Boarded on 8200 Series Electric Locomotives (8200호대 전기기관차 객차전원공급장치(HEP)의 출력전압품질향상을 위한 최적화된 PWM 방법)

  • Lee, Eul-Jae;Lee, Jin-Kook;Youn, Cha-Joong;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1628-1632
    • /
    • 2013
  • HEP(Head Electric Power) system, supplying 3-phase service power to the coach vehicles, is a kind of special auxiliary power equipment which is boarded on 8200 series electric locomotives in KORAIL. This equipment shares high voltage DC link with a main propulsion converter/inverter systems. It was difficult to use high frequency PWM technique so that GTO has been used as a power device same like the main power system. Due to low PWM frequency(300Hz) of HEP inverter, the output voltage has less power quality comparing to normal SIV(Static Inverter) system. In this paper, an optimal PWM strategy is presented for new IGBT type HEP inverter system. Several PWM techniques were investigated to improve output voltage quality under fixed lower filter inductance and not high PWM frequency. Finally PC simulations have been done to clarify its availability.

Improving the Dynamic Performance of Distribution Electronic Power Transformers Using Sliding Mode Control

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad;Rezaei, Mohammad Hosein
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.145-156
    • /
    • 2012
  • These days, the application of electronic power transformers (EPTs) is expanding in place of ordinary power transformers. These transformers can transmit power via three or four wire converters. Their dynamic performance is extremely important, due to their complex structure. In this paper, a new method is proposed for improving the dynamic performance of distribution electronic power transformers (DEPT) by using sliding mode control (SMC). Hence, to express the dynamic characteristics of a system, different factors such as the voltage unbalance, voltage sag, voltage harmonics and voltage flicker in the system primary side are considered. The four controlling aims of the improvement in dynamic performance include: 1) maintaining the input currents so that they are in sinusoidal form and in phase with the input voltages so they have a unity power factor, 2) keeping the dc-link voltage within the reference amount, 3) keeping the output voltages at a fixed amount and 4) keeping the output voltages in sinusoidal and symmetrical forms. Simulation results indicate the potential and capability of the proposed method in improving DEPT behavior.

Compensation of Periodic Magnetic Saturation Effects for the High-Speed Sensorless Control of PMSM Driven by Inverter Output Power Control-based PFC Strategy

  • Lee, Kwang-Woon
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1264-1273
    • /
    • 2015
  • An inverter output power control based power factor correction (PFC) strategy is being extensively used for permanent magnet synchronous motor (PMSM) drives in appliances because such a strategy can considerably reduce the cost and size of the inverter. In this strategy, PFC circuits are removed and large electrolytic DC-link capacitors are replaced with small film capacitors. In this application, the PMSM d-q axes currents are controlled to produce ripples, the frequency of which is twice that of the AC main voltage, to obtain a high power factor at the AC mains. This process indicates that the PMSM operates under periodic magnetic saturation conditions. This paper proposes a back electromotive-force (back-EMF) estimator for the high-speed sensorless control of PMSM operating under periodic magnetic saturation conditions. The transfer function of the back-EMF estimator is analyzed to examine the effect of the periodic magnetic saturation on the accuracy of the estimated rotor position. A simple compensation method for the estimated position errors caused by the periodic magnetic saturation is also proposed in this paper. The effectiveness of the proposed method is experimentally verified with the use of a PMSM drive for a vacuum cleaner centrifugal fan, wherein the maximum operating speed reaches 30,000 rpm.