• Title/Summary/Keyword: DC-DC buck converter

Search Result 388, Processing Time 0.033 seconds

Performance Improvement of a Buck Converter using a End-order Space Dithered Sigma-Delta Modulation based Random PWM Switching Scheme (2차 Space Dithered Sigma-Delta Modulation 기반의 Random PWM 스위칭 기법을 이용한 강압형 DC-DC 컨버터의 성능 개선)

  • Kim, Seo-Hyeong;Ju, Seong-Tak;Jung, Hea-Gwang;Lee, Kyo-Beum;Jung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper proposes the 2nd-order SDSDM (Space Dithered Sigma-Delta Modulation) for performance improvement of a buck converter. The PWM (Pulse Width Modulation) has a drawback in that power spectrum tends to be concentrated around the switching frequency. The resulting harmonic spikes cause a EMI(Electromagnetic Interference) and switching loss in semiconductor, etc. The 1st-order SDSDM scheme is a kind of DSDM for reducing these harmonic spikes. In this scheme, a switching frequency is spread through random dither generator placed on input part. In experimental result, the proposed 2nd-order SDSDM is confirmed by applying to a buck converter.

Switch Design of TM Type SIDO DC-DC Buck Converter for Camera Module (카메라 모듈용 TM 방식 SIDO DC-DC 벅 컨버터의 스위치 설계)

  • Choi, Hun;Lee, Dong-Keon;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • In this paper, a switch sizing method is proposed in order to prevent the cross-regulation in the TM type SIDO DC-DC buck converter. In TM type SIDO DC-DC buck converter, a DCM operation is required. In the DCM operation, the inductor peak current is larger than that in the CCM. Because of the larger inductor peak current and the added switch resistance, the voltage drop is increased, resulting in possible cross-regulation. To solve this problem, the switch resistance must be considered in sizing the switch. To simplify the calculation of the resistance, the inductor current was replaced by the average load current. Using the proposed method, TM type SIDO DC-DC buck converter for camera module was designed to provide two independent supply voltage(2.8 V and 1.8 V). The designed circuit was fabricated in a standard $0.35{\mu}m$ CMOS process. At a switching frequency of 1 MHz and a load current of 200 mA, a power effciency of 80.7% was achieved.

Control Strategy for Buck DC/DC Converter Based on Two-dimensional Hybrid Cloud Model

  • Wang, Qing-Yu;Gong, Ren-Xi;Qin, Li-Wen;Feng, Zhao-He
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1684-1692
    • /
    • 2016
  • In order to adapt the fast dynamic performances of Buck DC/DC converter, and reduce the influence on converter performance owing to uncertain factors such as the disturbances of parameters and load, a control strategy based on two-dimensional hybrid cloud model is proposed. Firstly, two cloud models corresponding to the specific control inputs are determined by maximum determination approach, respectively, and then a control rule decided by the two cloud models is selected by a rule selector, finally, according to the reasoning structure of the rule, the control increment is calculated out by a two-dimensional hybrid cloud decision module. Both the simulation and experiment results show that the strategy can dramatically improve the dynamic performances of the converter, and enhance the adaptive ability to resist the random disturbances, and its control effect is superior to that of the current-mode control.

Parallel Operation of Trans-Z-Source Network Full-Bridge DC-DC Converter for Wide Input Voltage Range

  • Lee, Hyeong-Min;Kim, Heung-Geun;Cha, Hon-Nyong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • This paper presents a novel transformer isolated parallel connected full-bridge dc-dc converter using recently developed trans-Z-source network. Unlike the traditional voltage -fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost function can be achieved and the converter reliability can be greatly improved. A 6 kW prototype dc-dc converter is built and tested to verify performances of the proposed converter.

Coupled Inductor-Based Parallel Operation of a qZ-Source Full-Bridge DC-DC Converter

  • Lee, Hyeongmin;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This study presents a novel transformer isolated parallel connected quasi Z-source (qZ-source) full-bridge DC-DC converter that uses a coupled inductor in both the qZ-source network and output filter inductor. Unlike traditional voltage-fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost functions can be achieved and converter reliability can be significantly improved. All the bulky inductors in the qZ-source network and output filter can also be minimized with the proposed inductor structures. A 4 kW prototype DC-DC converter is built and tested to verify the performance of the proposed converter.

Bidirectional dc-to-dc Converter Employing Dual Inductor for Current Ripple Reduction (전류 리플 저감을 위한 듀얼 인덕터 방식의 양방향 dc-to-dc 컨버터)

  • Lee, Gi Yeong;Kang, Feel-soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.531-537
    • /
    • 2018
  • This paper propose a bidirectional dc-to-dc converter employing dual inductor for current ripple reduction. Conventional bidirectional dc-to-dc converter uses a single inductor for two different modes; boost and buck; therefore it is difficult to satisfy the optimized inductance value for each mode. To improve this problem, the proposed converter adds two switches, a diode, and one inductor. By proper switching of the additional switch, the proposed converter operates with a inductor in boost mode, but it works with dual inductor in buck mode. Hence in both modes the proposed bidirectional converter can be operated with optimized inductance values. Most of all the optimized inductance in buck mode can reduce the current ripple and its effective value(rms), which are directly related to the temperature increase resulted in short lifetime of battery. To verify the validity of the proposed approach, we first analyzes the operation of the proposed converter theoretically, and implement computer-aided simulations and experiments using a prototype.

High-Frequency Equivalent Circuit Model for Differential Mode Noise Analysis of DC-DC Buck Converter (DC-DC 벅 컨버터의 차동모드 노이즈 분석을 위한 고주파 등가회로 모델)

  • Shin, Juhyun;Kim, Woojung;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.473-480
    • /
    • 2020
  • In this paper, we proposed a high frequency equivalent circuit considering parasitic impedance components for differential noise analysis on the input stage during DC-DC buck converter switching operation. Based on the proposed equivalent circuit model, we presented a method to measure parasitic impedance parameters included in DC bus plate, IGBT, and PCB track using the gain phase method of a network analyzer. In order to verify the validity of this model, a DC-DC prototype consisting of a buck converter, a signal analyzer, and a LISN device, and then resonance frequency was measured in the frequency range between 150 kHz and 30 MHz. The validity of the parasitic impedance measurement method and the proposed equivalent model is verified by deriving that the measured resonance frequency and the resonance frequency of the proposed high frequency equivalent model are the same.

The Output Voltage Control of Buck Type DC-DC Converter Using Sliding Mode and Neural Controller (슬라이딩 모드와 Neural network 제어기를 이용한 Buck type DC-DC 컨버터의 출력전압제어)

  • Hwang, Gye-Ho;Nam, Seung-Sik;Kim, Dong-Hee;Bae, Sang-June
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.95-100
    • /
    • 2004
  • A control alogorithm using sliding mode and neural network for Buck type DC-DC converter is presented. Also, we conform a rightness the proposal method by comparing a theoretical values and experimental values obtained from experiment using DSP(digital signal processor). Performance comparisons made with the general hysteresis controller clearly bring out the superior performance of the proposal neural network controller. This paper will be applied to other power conversion system using the proposal neural network controller.

Novel Self-Excited DC-DC Converters (새로운 자려식 DC-DC 컨버터)

  • Lee, Soung-Ju;Ahn, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2505-2507
    • /
    • 1999
  • This paper presents novel self excited DC-DC converters such as Buck-boost type, Buck type and also non-inverting Buck-boost type. The proposed converters has the following advantages: simple topology, small number of circuit components, easy control methode. Therefore, these converters are suitable for the portable appliances with battery source. Theoretical analysis and experimental results for SOW class Buck-boost type self oscillation DC-DC converter have been obtained, which demonstrate the high efficiency and good performance.

  • PDF

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.