• Title/Summary/Keyword: DC voltage ratio

Search Result 388, Processing Time 0.028 seconds

A Voltage-Lift DC-DC Converter with Large Conversion Ratio

  • Kim, Ho-Yeon;Moon, Eun-A;Lee, Yong-Mi;Choi, Youn-ok
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1054-1060
    • /
    • 2019
  • A extension of the high boost voltage-lift DC-DC converter with large conversion ratio has been proposed in this paper. The proposed extension is combined the switched-inductor cell (SL-cell) and modular voltage cell (MV-cell). The proposed structure can achieve the large voltage conversion without high duty-cycle and the low voltage of the components. Moreover, the PID controller for novel SL-MV voltage-lift DC-DC converter also introduces. This technique a good-performance output voltage can kept constant with an good transient performance when the output load is suddenly changed. In order to prove the theoretical analysis, the experimental setup has been built for the DC load of $150[{\Omega}]$ and $300[{\Omega}]$. In addition, the transient of output voltage has been tested to determine the controller. Experimental results validate the effectiveness of the theoretical analysis proving the satisfactory converter performance.

LCCT Z-Source DC-DC Converter with the Bipolar Output Voltages for Improving the Voltage Stress and Ripple (전압 스트레스와 맥동이 개선된 양극성 출력 전압을 갖는 LCCT Z-소스 DC-DC 컨버터)

  • Park, Jong-Ki;Shin, Yeon-Soo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.91-102
    • /
    • 2013
  • This paper proposes the improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source DC-DC converter (Improved LCCT ZSDC) which can generate the bipolar output voltages according to duty ratio D. The proposed converter has the characteristic and structure of Quasi Z-source DC-DC converter(Quasi ZSDC) and conventional LCCT Z-source DC-DC converter(LCCT ZSDC). To confirm the validity of the proposed method, PSIM simulation and a DSP based experiment were performed for each converter. In case which the input DC voltage is 70V, the bipolar output DC voltage of positive 90V and negative 50V could generate. Also, as comparison result of the capacitor voltage ripple in Z-network and the input current under the same condition for each converter, the voltage stress and the capacitor voltage in Z-network of the proposed method were lower compared with the conventional methods. Finally, the efficiency for each method was investigated according to load variation and duty ratio D.

Electrical properties of multilayer piezoelectric transformer (적층압전변압기의 전기적 특성)

  • 정수태;조상희
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.138-145
    • /
    • 1996
  • A multilayer piezoelectric transformer (MPT) which generates a high voltage dc power with low driving voltage and high voltage setup ratio was made by the tape casting method. The measured electrical characteristics of the MPT agreed with the results simulated from the equivalent circuit of the MPT. With increasing the number of layer in the MPT, the resonance curve of the input cur-rent revealed an asymmetry due to the increasing input capacitance, while that of output dc voltages revealed symmetry. The MPT which has very thin layer was excellently characterized as low driving voltage and high voltage setup ratio. The output dc voltage is nonlinearly influenced by the number of layer in the MPT.

  • PDF

Self Oscillation DC/DC Converter with High Voltage Step Up Ratio (고전압 변환비의 자려 발진 DC/DC Converter)

  • Jung, Yong-Joon;Han, Sang-Kyoo;Hong, Sung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.220-227
    • /
    • 2009
  • A self oscillation DC/DC converter which has a very desirable characteristics of the high input-output voltage conversion ratio for high voltage DC power supply applications is proposed in this paper. The proposed converter is composed of one power switch, one inductor, several capacitors and diodes. Compared with conventional high-voltage DC/DC converters, it performs the high- voltage power conversion using the inductor instead of the bulky step-up transformer. Therefore, it can reduce the size of magnetic device and save the cost. Moreover, since it needs no control IC by using self oscillation circuit and has lower voltage stress on output diodes, it features a lower cost, simpler structure and more improved performance. Finally, a comparative analysis and experimental results are presented to show the validity of the proposed converter.

A Study on the Voltage Holding Ratio and Residual DC Property in the IPS Cell (IPS 셀의 전압보유율 및 잔류 DC 특성에 관한 연구)

  • Jeon, Yong-Je;Kim, Hyang-Yul;Seo, Dae-Shik;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.174-177
    • /
    • 2001
  • The voltage holding ratio (VHR) and Residual DC property in the in-plane switching (IPS) cell was studied Several IPS cells which have different concentrations of cynao liquid crystals (LCs) and different resistivities of fluorine LCs were fabricated VHR and residual DC voltage in the IPS cells using the capacitance-voltage (C-V) hysteresis method was measured. We found that the VHR of the IPS cell was decreasing with increasing concentration of cyano LC. The residual DC voltage of the IPS cell was decreasing with increasing concentration of cyano LCs. We suggest that the high polarity of cyano LC helps reducing the residual DC voltage.

  • PDF

A Study on VHR and Residual DC Property in the IPS Cells (IPS셀의 전압보유율 및 잔류DC특성 연구)

  • 김향율;서대식;남상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.169-172
    • /
    • 2002
  • The voltage holding ratio(VHR) and the residual DC property in the in-plane switching (IPS) cells on a polyimide surface was studied. Several IPS cells which have different concentrations of cyano liquid crystals (LCs) were fabricated. We found that the VHR of the IPS cell was decreased with increasing concentration of cyano LCs. Also, the VHR of the IPS cell was increased with increasing specific resistivity of fluorine LCs. The residual DC voltage of the IPS cell by capacitance-voltage (C-V) hysteresis method was decreased with increasing concentration of cyano LCs. The residual DC property of the IPS cell on the rubbed PI surface can be improved by high polarity of cyano LC.

Characteristics of Transient State and Stress of Three-Phase Switched Trans Z-Source DC/AC Power Converter (3상 Switched Trans Z-소스 직류/교류 전력변환기의 스트레스 및 과도상태 특성)

  • Lim, Young-Cheol;Kim, Se-Jin;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 2012
  • When typical Z-source DC/AC inverter(ZSI) is operated in high voltage gain area, because of its high duty ratio, voltage and current stress in Z-network of typical ZSI are increased. This paper proposes a new switched trans ZSI(STZSI) with two switched trans cells which consist of one trans and two diodes. To confirm the operation performance of the proposed system, the PSIM simulation is performed for typical ZSI, switched inductor ZSI and the proposed STZSI. Voltage / current stress and transient state characteristics of each method are compared under the condition of DC input voltage 100[V] and output phase voltage 66[Vrms]. As a result, we confirmed that transient state of the proposed STZSI is short compared with the conventional ZSI because the high voltage gain is obtained using the same duty ratio, also a low duty ratio is required for the same output voltage. Finally, we could know the proposed system have low voltage and current stress in Z-network compared with the conventional ZSI.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

Implementation of Non-time-varying Duty Ratio Transfer Function for Improvement of Control Characteristics Bi-directional Charger (비시변 시비율 전달함수 구현에 의한 양방향 충전기 제어특성 개선)

  • Hwang, Jung-Goo;Kim, Sun-Pil;Han, Sang-Taek;Kim, Ki-Seon;Choo, Young-Bae;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.124-132
    • /
    • 2014
  • In this paper, we implement a non-time-varying transfer function of the duty ratio to improve the control characteristics in a control system that Input voltage and the output voltage is varied, DC / DC converters for bi-directional charging. When control is performed with using controller gain of conventional design, characteristics of the control is varied to fluctuations of the input voltage. The proposed method is the equivalently removing method for duty ratio in entire control block, by voltage controller gain is changed for inverse of the duty ratio. The proposed non-time-varying duty ratio transfer function is applied to DC / DC converter for bi-directional charging. In this paper, feasibility and superiority is verified through PSIM simulations and experiments.

Characteristics of Output Voltage and Input Current of Quasi Z-Source Converter with a Diode-Capacitor Output Filter (다이오드-커패시터 출력필터를 갖는 Quasi Z-소스 컨버터의 입력 전류와 출력전압 특성)

  • Lim, Young-Cheol;Kim, Se-Jin;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.16-28
    • /
    • 2012
  • This paper proposes a quasi Z-source converter(QZSC) with a diode-capacitor output filter to improve the output DC voltage boost ability. The proposed converter has the same quasi Z-source network topology compared with the conventional converter. But the proposed method is adopted a diode-capacitor filter as its output filter, since the conventional method is used an inductor-capacitor as its output filter. Under the condition of the same input-output DC voltage, the proposed method has more lower shoot-through duty ratio than the conventional method. Also, because the proposed converter has same voltage boost factor under lower shoot-through duty ratio compared with the conventional converter, the proposed converter can be operated with the lower capacitor voltage of Z-source network and the lower input current. To confirm the validity of the proposed method, PSIM simulation and a DSP based experiment were performed to acquire the output DC voltage 120[V] under the input DC voltage 80[V]. And the capacitor voltage and inductor current in Z-source network, the output voltage of each converter were compared and discussed.