• Title/Summary/Keyword: DC reactor

Search Result 173, Processing Time 0.027 seconds

Short Circuit Tests of the Three-Phase DC Reactor Type Fault Current Limiter in Changing of Turns Ratio of Transformers (변압기 권선비의 변화에 따른 3상 DC 리액터형태 한류기의 단락실험)

  • Lee, Eung-Ro;Lee, Chan-Ju;Lee, Seung-Je;Go, Tae-Guk;Hyeon, Ok-Bae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.267-272
    • /
    • 2002
  • This Paper deals with the short circuit tests of the three-Phase DC reactor type fault current limiter (FCL) in changing of turns ratio of transformers. The experiment of this paper is a preliminary step to develop the FCL's faculties for an application to high voltage transmission line. So, superconducting coil was made of Nb-Ti, low temperature superconductor, and the ratings of the power system of experimental circuit are 400V/7A class. A three-phase DC reactor type FCL consists of three transformers, six diodes, one superconducting coil and one cryostat. The important point of experimental analysis is transient period, the operating lagging time of circuit breaker. As the results of the experiment, the values are referred to the limitation rate about 77% and 90% when the turns ratio of transformer was 1:1 and 2:1 respectively.

Optimal Design of 6.6kV-200A DC Reactor Type High-Tc Superconducting: Fault Current Limter (6.6kV-200A급 DC 리액터형 고온초전도한류기의 최적설계)

  • 서호준;이승제;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.99-104
    • /
    • 2002
  • This study deals with the optimal design of a DC reactor type high-Tc superconducting fault current limiter(SFCL). The condition in which the cost function is minimized under given constraints is one of the things to be first considered in developing SFCLS. This condition is a group of the values corresponding to the variables the cost function depends on. In this paper, the length of tape was taken as a dependent variable, the inductance of DC reactor and the turns ratio of magnetic core reactors as independent variables. For the SFCL available at the level of 6.6kV-200A, we examined 4 cases; at the fault times of 80msec, 50msec, 30msec and 10msec. Since thyristors would be utilized instead of diodes, we chose the result at 10msec as the basic data. Considering safety factor 30%, our optimal design was decided to be the inductance 570mH, the critical current over 620A, the turns ratio 0.89 and the fault time within 20msec.

The Double-Output DC-DC Converter Using the Current-Fed Converter (전류환류형 DC-DC콘버터를 이용한 이중출력 회로)

  • 이윤종;김희준;안태영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.451-457
    • /
    • 1989
  • The current-fed DC-DC converter, which is known as the most stable DC-DC converter, has a two-winding reactor in series with the input. In this paper a new double-output DC-DC converter circuit, in which the 2nd winding of the reactor is creating the 2nd output, while the 2nd winding is feeding the energy to the input in the current-fed converter, is propose. The steady state characteristics of the new circuit are clarified and it is found that the maximum value exists in the 2nd output. Furthermore, regulation characteristic is analysed by 'Slope method' and the result shows good agreement with experimental value. The 2nd output voltage regulation is performed by using regulation IC. As a result, we have achieved good regulation characteristics.

  • PDF

Structure Design and Thermal Analysis of Cryogenic Cooling System for a 1500 A, 400 mH Class HTS DC Reactor (1500 A, 400 mH급 초전도 직류 리액터용 극저온 냉각 시스템 구조 설계 및 열 해석)

  • Quan, Dao-Van;Le, Tat-Thang;Sung, Hae-Jin;Park, Min-Won;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.31-41
    • /
    • 2018
  • This paper discusses a structure design and thermal analysis of cryogenic conduction cooling system for a high current HTS DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. Hence, we carried out the operating test of conduction cooling system of the 1st stage area with high current flow. The cooper bars was cooled down to 40 K and HTS leads operated stably. As a experiment result, the total heat load of the 1st stage area is 190 W. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.

Operating characteristics of a superconducting DC circuit breaker connected to a reactor using PSCAD/EMTDC simulation

  • Kim, Geon-woong;Jeong, Ji-sol;Park, Sang-yong;Choi, Hyo-sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.51-54
    • /
    • 2021
  • The DC system has less power loss compared to the AC system because there is no influence of frequency and dielectric loss. However, the zero-crossing point of the current is not detected in the event of a short circuit fault, and it is difficult to interruption due to the large fault current that occurs during the opening, so the reliability of the DC breaker is required. As a solution to this, an LC resonance DC circuit breaker combined a superconducting element has been proposed. This is a method of limiting the fault current, which rises rapidly in case of a short circuit fault, with the quench resistance of the superconducting element, and interruption the fault current passing through the zero-crossing point through LC resonance. The superconducting current limiting element combined to the DC circuit breaker plays an important role in reducing the electrical burden of the circuit breaker. However, at the beginning of a short circuit fault, superconducting devices also have a large electrical burden due to large fault currents, which can destroy the element. In this paper, the reactor is connected to the source side of the circuit using PSCAD/EMTDC. After that, the change of the fault current according to the reactor capacity and the electrical burden of the superconducting element were confirmed through simulation. As a result, it was confirmed that the interruption time was delayed as the capacity of the reactor connected to the source side increased, but peak of the fault current decreased, the zero-crossing point generation time was shortened, and the electrical burden of the superconducting element decreased.

Design of the Magnetic Core Reactor for the connection to the Power System of DC Reactor Type High Temperature Superconducting Fault Current Limiter (DC 리액터형 고온초전도한류기의 전력계통 연계를 위한 자기철심리액터의 설계)

  • 임대준;배덕권;김호민;이찬주;윤경용;윤용수;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.322-325
    • /
    • 2002
  • In this paper, the power-linking device connecting the high-Tc super-conducting(HTS) coil to the power system in the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been designed. This design was triggered from the concept that the magnetic energy could be exchanged into the electrical energy each other. Ferromagnetic material is used as the path of magnetic flux. The device mentioned above was named Magnetic Core Reactor(MCR). MCR was designed to minimize the voltage drop caused by copper loss. The current density of the conductor was 1.3 A/mm$^2$ and % voltage drop was 2%.

  • PDF

Nox reduction of exhaust gas using corona discharge (코로나방전을 이용한 배기가스중의 Nox제거)

  • 김종달;박재윤;고희석
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.721-726
    • /
    • 1995
  • In this paper, reduction characteristics of NOx gas produced from diesel engine combustion is studied by using pulse corona discharge. Nox concentration of 1900ppm (NO 1870, NO$\sub$2/ 30 ppm, N$\sub$2/ balance gas) was controlled in a fixed quantity of 280ppm, using a flow meter. Reactors are composed of cylinder type. NOx reduction rate is investigated with discharge electrode diameter[0.5,1,3,4.phi.], reactor length [130,300mm], reactor materials[Copper, Poly Vinyl Chloride] and Input voltage[DC, AC, DC Pulse square voltage]. In the result, NOx reduction rate is the best of all in copper reactor, small electrode diameter[0.5.phi.], DC pulse voltage and long reactor[300mm]. Then Teduction rate of NOx is about 93%.

  • PDF

Analysis of the Current-Fed DC-DC Converter with Energy-Storage Reactor Feeding the Input (전원에 에너지가 회생되는 전류형 DC-DC 콘버어터의 해석)

  • ;原田耕介
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.4
    • /
    • pp.41-46
    • /
    • 1983
  • The current-fed DC-DC converter has only one energy storage reactor in series with the input for any number of outputs and is insensitive to transformer volt-second unbalance. It is considered that these properties of the converter are considerable advantages over other maltiple-output circuits. The steady-state and dynamic characteristic and stability for the current-fed DC-DC con-verter are analyzed in detail. The analysis is carried out by the state-space averaging method for the operation with the duty ratio less than 50% and is confirmed by the experiment. From the evaluation of stability it is identified that the stability of this converter is excellent as compared with that of the conventional buck type converter.

  • PDF

Photovoltaic System for the DC Reactor Reduction of the Current Source Inverter (전류형 인버터의 리액터 경감을 위한 태양광발전시스템)

  • Park, In-Duck;Sung, Nark-Kuy;Lee, Seung-Hwan;Kang, Seung-Wook;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.484-486
    • /
    • 1997
  • In this paper, we compose of the utility phovoltaic system with the stepdown chopper and the current source inverter to reduce pulsation of dc current and dc reactor. We study that control several ways(twice frequency of utility voltage square pulse and without the chopper) of chopper part. Therefore if voltage across the dc reactor equal to zero, it is decreased. And we control modulation factor of the chopper to operate at maximum power point around of solar cell.

  • PDF

Characteristics of Prototype Solenoid for Basic Design of DC Reactor Type SFCL (유도형 고온초전도한류기의 DC 리액터 설계를 위한 솔레노이드 특성실험)

  • 김민철;안민철;이승제;김영식;김진기;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.213-215
    • /
    • 2003
  • This paper deals with the characteristics of a prototype solenoid for basic design of DC reactor type superconducting fault current limiter (SFCL). The prototype high-Tc Super-conducting (HTS) solenoid was manufactured with 4 stacked Bi-2223 tape. The critical currents were measured with respect to the number of stacks. In order to test the safety of HTS solenoid in quenched state, the transport tests of AC over-current were performed. These experimental results could be applied to the basic design of HTS DC reactor for SFCL effectively.

  • PDF