• Title/Summary/Keyword: DC railway system

검색결과 187건 처리시간 0.024초

슈퍼커패시터를 이용한 전동차량 화생 에너지 저장 시스템의 제어기법 (A Control Method of Electric Railway Vehicle Recycle Energy Storage System Using Supercapacitor)

  • 노세진;이진목;손경민;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.97-99
    • /
    • 2008
  • It is possible to suppress voltage drops, power loading fluctuations and regeneration power lapses for DC railway systems by applying an energy storage system. Recently the electric double layer capacitor (EDLC) of the rapid charge/discharge type has been developed and used in wide ranges. The on board energy storage system with supercapacitor for railway vehicles presented in this paper seems to be a reliable technical solution with an enormous energy saving potential. In this paper, an efficient charge and discharge control method of a bidirectional DC-DC converter using the supercapacitor is proposed.

  • PDF

직류급전시스템에서의 귀환전류 변화비를 이용한 표유전류 실시간 감시기법에 관한 연구 (A Study on the Real Time Measuring Technique of Stray Current by Using Return Current Ratio in the DC Railway System)

  • 정호성;박영;김형철;민명환;신명철
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.892-898
    • /
    • 2011
  • In DC electric railways, while an electric rail car is driving, a part of the working current returned to the substation through rails leaks into the ground. Such a stray current causes railway facilities and metal objects to corrode electrolytically. Therefore, change of stray current needs to be monitored constantly. But so far in domestic, the research on stray current measuring techniques and system adaption are insufficient. To estimate stray current, this paper addresses a method of monitoring the return current that is returned into the negative pole of the substation in real time.

하이브리드 타입 에너지 저장장치의 교류 고속철도 적용 (Applying Hybrid Type Energy Storage System in AC High Speed Railway)

  • 전용주;강병욱;채희석;김재철
    • 조명전기설비학회논문지
    • /
    • 제28권9호
    • /
    • pp.60-66
    • /
    • 2014
  • In case of DC railway, value of ESS(Energy Storage System) is already approved. Whereas AC railway system, there are a lot of differences such as system design and operation pattern. Therefore there is doubt about AC ESS usefulness. Especially, regenerative energy can return to the source. So in case of AC 25kV system, it is necessary to consider different operation algorithm compare to DC railway system. In this paper ESS which is installed in AC high-speed railway was introduced. Power consumption pattern of High speed trains were analyzed, proper storage material was reviewed and operation algorithm was suggested. Super capacitor and Battery was used with hybrid type. Super capacitor was used to handle short term energy movement because of its prompt response and battery was used to handle long term energy movement because of its high energy density. Also in case of operation algorithm, phase control method was upgraded compare to voltage magnitude detection method.

도시철도 변전소 절연진단 프로그램 기술 분석 (An Analysis on Technology of Urban Railway Substation Insulation Diagnostic Program)

  • 박현준;박영;정호성;김형철;유기선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.116-116
    • /
    • 2010
  • This paper introduces an comprehensive monitoring and management program for implementation of a real-time monitoring system that monitors condition of urban railway AC/DC transformers, disconnecting switches, circuit breakers, regulators, and GIS (Gas Insulated Switchgear). Especially, the system is applied to diagnose the overall condition of urban railway substations by sending acquired data through an OPC server to a database, effectively storing and monitoring conditions simultaneously. The above system is a management based system and is also applicable to small-scale systems.

  • PDF

직류철도의 레일누설전류 밑 전위평가 (Evaluation of Rail Leakage Current and Potential in DC Railway)

  • 한문섭;정호성;김주락;길경석
    • 한국철도학회논문집
    • /
    • 제12권1호
    • /
    • pp.161-166
    • /
    • 2009
  • 직류급전시스템은 주로 비접지방식을 사용하지만 레일과 대지간이 긴 거리를 평행하게 구성되어 레일저항과 레일-대지간 콘덕턴스가 존재하여 레일전위와 누설전류가 발생한다. 레일전위는 인체에 전기적 쇼크를 주고 누설전류는 인근 매설 철 구조물에 전해적 부식을 주게 된다. 그러므로 이러한 영향을 줄이고, 방지와 감시하는 설계기술이 현 직류급전시스템에서는 중요한 요소이다. 레일전위와 누설전류의 해석은 전파이론에 의해 이루어졌으며 레일저항과 레일-대지간 콘던턴스의 상태를 유지하기 위해 레일누설전류를 감시/제어하는 방안이 제안되었다.

전기철도의 DC급전시스템 시뮬레이터 (Simulator for DC Power Supply System in Electric Railway)

  • 정상기;홍재승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.720-726
    • /
    • 2000
  • The advance of traction motor control technology and the complexity of the traction power supply system makes the simulation essential in determining the dimension of the traction power supply system. The conventional method, use of the simplified and/or empirical equations, becomes inadequate in optimization of the design. The simulator presented in this paper is a numerical time based simulator running on a PC. The input to the simulator includes the track data, the train characteristic, network data and operating data. Basically the simulator conducts train running simulation and loadflow study repeatedly. The principle algorithms and its output is discussed in the paper.

  • PDF

직류전기철도 급전시스템에서 레일전위 해석을 위한 모델링 (Modeling for the Analysis of Rail Potential in the DC Railway Power System)

  • 조웅기;최규형
    • 조명전기설비학회논문지
    • /
    • 제24권6호
    • /
    • pp.138-146
    • /
    • 2010
  • 본 논문은 직류 전기철도 급전시스템에서 레일전위와 누설전류의 분석 기법을 제시하였다. 일반적으로 직류 전기철도 급전시스템에서는 운행용 레일을 귀로 전류(부극성)의 도체로 사용하고 있으므로 레일전위가 발생하고, 특히 차량 운행용 레일과 대지사이의 저항이 작은 경우에는 대지로 흐르는 누설전류가 문제가 된다. 이 레일전위 및 누설전류는 레일 주변에 설치된 지하 매설물에 영향을 미치며, 인체의 안전과도 관련이 있다. 이에 따라 직류 전기철도 급전시스템에서 레일전위와 누설전류를 억제하는 것은 전기철도 주변 환경 및 안전 측면에서 중요한 문제이다. 이상과 같은 관점에서, 직류 전기철도 급전시스템에 대하여 단독급전 및 병렬급전 상황에서 레일전위와 누설전류를 계산할 수 있는 알고리즘을 제안하였으며, 또한 열차주행시뮬레이션(TPS)과 연동하여 열차주행에 따라 부하전류가 변동되는 상황에서 레일전위와 누설전류를 정량적으로 분석할 수 있도록 하였다. 제안한 알고리즘을 이용하여 시뮬레이션 프로그램을 개발하였고, 직류전기철도 급전시스템에 대하여 사례 연구를 수행하였다.

직류 철도용 MOV 병렬연결 1,800V급 IGBT 직류 고속차단기 연구 (IGBT DC Circuit Breaker with Paralleled MOV for 1,800V DC Railway Applications)

  • 한문섭;이장무;김주락;창상훈;김인동
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2109-2112
    • /
    • 2016
  • The rate of rise of the fault current in DC grids is very high compared to AC grids because of the low line impedance of DC lines. In AC grids the arc of the circuit breaker under current interruption is extinguished by the zero current crossing which is provided naturally by the system. In DC grids the zero current crossing must be provided by the circuit breaker itself. Unlike AC girds, the magnetic energy of DC grids is stored in the system inductance. The DC circuit breaker must dissipate the stored energy. In addition the DC breaker must withstand the residual overvoltage after the current interruption. The main contents of this paper are to ${\cdot}$ Explain the theoretical background for the design of DC circuit breaker. ${\cdot}$ Develop the simulation model in PSIM of the real scaled DC circuit breaker for 1,800V DC railway. ${\cdot}$ Suggest design guidelines for the DC circuit breaker based on the experimental work, simulations and design process.

도시철도 급완행 통합해석 알고리즘 개발에 관한 연구 (A Study for Development of Integrated DC Railway System Analysis Algorithm)

  • 장동욱;김무선;홍재성;이한상
    • 전기학회논문지
    • /
    • 제64권4호
    • /
    • pp.646-652
    • /
    • 2015
  • Increasing needs for rapid driving vehicles during rush hour, there are various researches how to operate or allocate rapid driving vehicles with the existing normal driving vehicles. In the aspect of power system, it should be preceded by an analysis for power equipment capacity. Also, it should be studied whether the added rapid driving vehicles gives a bad effects for stable operation of railway systems or not. In order to derive the results for these analysis processes, this paper suggest a novel analysis algorithm which can implement integrated analysis including rapid and normal driving railway vehicles simultaneously. This algorithm has been verified using Seoul Metro 7 Line data.

전기철도 변전소의 직류고속도차단기 동작 감소방안에 관한 연구 (A Study on the DC High Speed Circuit Breaker(HSCB) in Electric Railway Substation System)

  • 허태복;김학련;창상훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1303-1308
    • /
    • 2004
  • This paper proposes a reduction method for the mis-operation analysis of the DC High Speed Circuit Breaker(HSCB) in electric railway substation system. The analysis method is based on present condition of operation which is a method for accuracy level up. There is reason to operation of HSCB that it is mis-operation of fault detection relay(50F), operation of ground fault relay(64P), and trouble of electric car. A countermeasure is relay resetting through field test, induction of GTOCB(Gate Turn Off Thyristor Circuit Breaker), HSVCB(High Speed Vacuum Circuit Breaker), coordination with electric car. The results presented in the paper can be used as a reference for maintenance free in electric railway substation system.

  • PDF