• Title/Summary/Keyword: DC railroad

Search Result 118, Processing Time 0.031 seconds

Design of DC-DC Converter to Charge and Discharge Ultra-Capacitor Modules for Wireless Trains (무가선 전동차용 울트라커패시터 모듈 충·방전을 위한 DC-DC 컨버터 설계)

  • Jo, Jeong-Min;Han, Young-Jae;Kim, Jae-Won;Lee, Jang-Moo;Kim, Gil-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1776-1781
    • /
    • 2015
  • Electric power trains receive electric power from overhead cables via a pantograph system. Power collector system in trains increase the cross section of tunnel and require a massive coreless filter reactor in propulsion inverter because of the power disturbance by contact loss phenomenon of a train. In this paper we proposed a wireless train which can run to next station with charging energy of ultra-capacitor module block. We designed DC-DC converter to charge and discharge ultra-capacitor modules by using Next Train running test results and confirm the feasibility of the proposed system through simulation.

Analysis of Lightning Overvoltage and Shielding Effect of Arrester and Overhead Grounding Wire on DC Railroad (직류전차선로의 뇌과전압 해설 및 피뢰기와 가공지선 차폐효과 검토)

  • Jung, Chae-Kyun;Hong, Dong-Suk;Lee, Jong-Beom;Cho, Han-Goo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.359-364
    • /
    • 2001
  • This paper presents the influence of the lightning overvoltage and the shielding effect of lightning arresters and overhead grounding wires on the DC railroad systems. Modeling of railroad system is established in ATPDraw to perform the simulation and the line constants of railroad were calculated using ATP_LCC. When a direct lightning strikes to the DC railroad, the result of simulation reveals that the shielding effect of arresters is reduced at messenger, trolly-wire, and the shielding effects of overhead grounding wire is over 90% than the case which does not include it. Therefore it is evaluated that overhead grounding wires should be installed in the DC railroad line.

  • PDF

Simulation study of a grid-connected inverter for absorption of regenerative energy in a DC traction substation (도시철도 직류변전소의 회생전력흡수를 위한 계통연계형 인버터 시뮬레이션)

  • Bae, C.H.;Han, M.S.;Jung, H.S.;Kim, Y.K.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.279-281
    • /
    • 2005
  • In DC traction substation with 12-pulse diode rectifiers, the DC line voltage tends to rise above noload voltage because it can't absorb the regenerative power caused by electric brakes of train. To solve this problem, an IGBT regenerative inverter should be installed and thus recycles the surplus regenerative power by delivering it to the supply grid. In this paper, the DC traction substation equipped with a IGBT regenerative inverter is studied using computer simulation. Matlab/simulink is used to simulate the operation of regenerative inverter which injects the regenerative power into the supply grid and stabilizes the DC line voltage. It is confirmed that the high quality regenerative power is delivered to the supply grid thorough computer simulation.

  • PDF

Voltage rising simulation due to the ground fault in DC traction system (직류 급전시스템에서의 지락고장에 따른 전압상승 시뮬레이션)

  • Jung, Ho-Sung;Han, Moon-Seob;Park, Young;Chung, Sang-Gi;Kwon, Sam-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.215-217
    • /
    • 2008
  • DC fraction system can damage human and other facilities due to the rising of rail potential. Therefore the earth fault detection relay protects system using rail potential induced in train operation and ground fault. However the conventional protection system cannot operate due to the fault resistance and might operate unwanted voltage rising due to the other substation ground fault. So this paper models DC traction system using PSCAD/EMTDC and simulates the rail potential rising. We can estimate the rail potential rising in DC traction system through the various simulation.

  • PDF

Development and Performance Test of DC Smart Metering System for the DC Power Measurement of Urban Railway (도시철도 직류 전력량 계측을 위한 직류용 스마트미터링 시스템 개발 및 성능시험)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.713-718
    • /
    • 2014
  • DC urban railway power system consists of DC power network and AC power network. The DC power network supplies electric power to railway vehicles and the AC power network supplies electric power to station electric equipment. Recently, because of power consumption reduction and peak load shaving, intelligent measurement of regenerative energy and renewable energy adapted on DC urban railway is required. For this reason, DC smart metering system for DC power network shall be developed. Therefore, in this paper, DC voltage sensor, current sensor, and DC smart meter were developed and evaluated by performance test. DC voltage sensor was developed for measuring standard voltage range of DC urban railway, and DC current sensor was developed as hall effect split core type in order to install in existing system. DC smart meter possesses function of general intelligent electric power meter, such as measuring electricity and wireless communication etc. And, DC voltage sensor showed average 0.17% of measuring error for 2,000V/50mA, and current sensor showed average 0.21% of measuring error for ${\pm}2,000V/{\pm}4V$ in performance test. Also DC smart meter showed maximum 0.92% of measuring error for output of voltage sensor and current sensor. In similar environment for real DC power network, measuring error rate was under 0.5%. In conclusion, accuracy of DC smart metering system was confirmed by performance test, and more detailed performance will be verified by further real operation DC urban railway line test.

Fault analysis and protection of the DC traction power supply system (전기철도 DC급전시스템의 보호 및 사고전류해석)

  • Chung, S.G.;Lee, B.S.;Jeong, R.K.;Park, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.30-33
    • /
    • 2001
  • 도시철도 DC 급전시스템은 부하전류가 사고전류보다 클 수 이는 특징을 가지고 이다. 이러한 이유로 DC 급전시스템에서는 di/dt를 측정하여 사고전류를 부하전류로부터 구분하고 있다. 이것은 사고전류의 di/dt와 부하전류의 di/dt는 서로 다른 상이한 특성을 보이고 있기 때문이다. 본문에서는 DC도시철도급전시스템에서 흔히 사용되는 di/dt 계전기와 이의 설정을 위한 사고전류의 분석 및 설정방법에 대해 알아본다.

  • PDF

Design of Condition Judgment System for DC Power Overload on Electric Railway (전기철도 DC 전력설비 과부하 상태판단 기술 설계)

  • Park, Young;Park, Chul-Min;Kwon, Sam-Young;Lee, Ki-Won;Cho, Yong-Hyeon;Na, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2212-2212
    • /
    • 2011
  • 현재 국내의 경우 설비의 열화 상태 및 그 경향을 파악하여 부적합한 상태를 파악하기 위한 다양한 상태판단 기술이 개발되고 있다. 본 논문에서는 전기철도 DC 전력설비 과부하 상태판단 기술과 설계 방향에 관하여 기술하였다. 또한 실용적 리뉴얼 방향과 실용적교체 기준의 국내외 기법을 조하하여 이를 적용하기 위한 기술연구를 수행하였으며 이를 바탕으로 도시철도 전력설비의 실태진단을 위한 노후화 시스템 교체 기준 수립의 기초 연구 및 기본 조사 방향이 되고자 하였다.

  • PDF

A Study on Analysis Method of DC Electric Railroad using Terminal Network Analysis (단자망을 이용한 직류전기철도 해석방안에 관한 연구)

  • Lee, Chang-Mu;Jang, Dong-Uk;Kim, Jae-Won;Han, Mun-Seup;Jung, Hwan-Su;Kim, Joo-Rak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1913-1918
    • /
    • 2016
  • In order to analyze the power consumption pattern of the DC urban rail system, the method to obtain a solution establishing the current equation according to fixed position of the substation and varying position of the train is used. The proposed analysis method using the network analysis is to model the transfer function of the component constituting a direct current power supply system (dc substation, train, catenary) to the voltage and current. By multiplying the model formula consecutive, it can calculate the voltage and current of each element of power supply circuit and shows a simple case analysis.

A Study on Charging Efficiency Variability by Utilizing Remaining Capacity of EV DC Charging Facility Batteries of Railway Electric Power Grids (철도전력망을 이용한 EV DC 충전설비 배터리 잔존용량에 따른 충전효율 가변성 연구)

  • Kim, Ki-Suk;Jung, Ho-Sung;Park, Young;Park, Chan-Bae;Park, Chul-Min;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2171-2172
    • /
    • 2011
  • Recently, while interests on supply of electric vehicles have increased there still are insufficient charging facilities. As a solution to this matter, using electric power grids that constantly retain about 30~50[%] residual power is being considered. Therefore proposed in this paper railway, is a method to establish a charging infrastructure to utilize railway DC power grids. In addition we designed a high-speed DC charging system, and simulated improvements of the charging structure's charging efficiency according to remaining capacity of batteries.

  • PDF

Measurement and Analysis of Electromagnetic field for DC electric railway train (직류철도차량에 대한 자계측정 및 분석)

  • Jang, Dong-Uk;Kim, Min-Cheol;Lee, Chang-Mu;Han, Moon-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1637-1639
    • /
    • 2005
  • The measurement of magnetic field is performed about DC and AC magnetic field in test track of depot. The test point is cap, on the converter/inverter box, on the traction motor, on the APSE and on the line filter, the height of measurement is bottom and 50 cm height. In case of AC magnetic field, the selected specific frequency is measured on the converter/inverter box. The AC magnetic field is checked and analysis through RS-232C and notebook PC. The DC magnetic field is measured by using the Hall Probe, test result is saved and analysis by PXI system. On the line filter, the maximum value is 1.4 mT in case of DC magnetic field and 0.044 mT in case of AC magnetic field at 50 Hz.

  • PDF