• Title/Summary/Keyword: DC power transmission

Search Result 293, Processing Time 0.019 seconds

Evaluation of Tribological Characteristics of Diamond-Like Carbon (DLC) Coated Plastic Gear (플라스틱 기어의 트라이볼로지적 특성 향상을 위한 DLC 코팅 적용)

  • Bae, Su-Min;Khadem, Mahdi;Seo, Kuk-Jin;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Demand for plastic gears are increasing in many industries due to their low production cost, light weight, applicability without lubricant, corrosion resistance and high resilience. Despite these benefits, utilizing plastic gears is limited due to their poor material properties. In this work, DLC coating was applied to improve the tribological properties of polyamide66 gear. 0 V, 40 V, and 70 V of negative bias voltages were selected as a deposition parameter in DC magnetron sputtering system. Pin-on-disk experiment was performed in order to investigate the wear characteristics of the gears. The results of the pin-on-disk experiment showed that DLC coated polyamide66 with 40 V of negative bias voltage had the lowest friction coefficient value (0.134) and DLC coated PA66 with 0 V of negative bias voltage showed the best wear resistance ($9.83{\times}10^{-10}mm^3/N{\cdot}mm$) among all the specimens. Based on these results, durability tests were conducted for DLC coated polyamide66 gears with 0 V of negative bias voltage. The tests showed that the temperature of the uncoated polyamide66 gear increased to about $37^{\circ}C$ while the DLC coated gear saturated at about $25^{\circ}C$. Also, the power transmission efficiency of the DLC coated gear increased by about 6% compared to those without coating. Weight loss of the polyamide66 gears were reduced by about 73%.

High-performance 94 GHz Single Balanced Mixer Based On 70 nm MHEMT And DAML Technology (70 nm MHEMT와 DAML 기술을 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim Sung-Chan;An Dan;Lim Byeong-Ok;Beak Tae-Jong;Shin Dong-Hoon;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.8-15
    • /
    • 2006
  • In this paper, the 94 GHz, low conversion loss, and high isolation single balanced mixer is designed and fabricated using GaAs-based metamorphic high electron mobility transistors (MHEMTs) with 70 nm gate length and the hybrid ring coupler with the micromachined transmission lines, dielectric-supported air-gapped microstrip lines (DAMLs). The 70 nm MHEMT devices exhibit DC characteristics with a drain current density of 607 mA/mm an extrinsic transconductance of 1015 mS/mm. The current gain cutoff frequency ($f_T$) and maximum oscillation frequency ($f_{max}$) are 320 GHz and 430 GHz, respectively. The fabricated hybrid ring coupler shows wideband characteristics of the coupling loss of $3.57{\pm}0.22dB$ and the transmission loss of $3.80{\pm}0.08dB$ in the measured frequency range of 85 GHz to 105 GHz. This mixer shows that the conversion loss and isolation characteristics are $2.5dB{\sim}>2.8dB$ and under -30 dB, respectively, in the range of $93.65GHz{\sim}94.25GHz$. At the center frequency of 94 GHz, this mixer shows the minimum conversion loss of 2.5 dB at a LO power of 6 dBm To our knowledge, these results are the best performances demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF