• Title/Summary/Keyword: DC link voltage control

Search Result 442, Processing Time 0.02 seconds

A Voltage Compensation Method to Improve the Control Performance for B4 Inverters (B4 인버터의 제어성능 향상을 위한 전압보상 기법)

  • 오재윤
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.317-320
    • /
    • 2000
  • This paper proposes a voltage compensation method to improve the control performance of B4 inverter which is studied for low-cost drive systems. The B4 inverter employs only four switches and it has a center-tapped connection in the split dc-link capacitors to one phase of a three-phase motor. In the B4 topology unbalan-cd three-phase voltages will be generated by the dc link voltage ripple. To solve this problem we present a voltage compensation method which adjusts switching times considering dc link voltage ripple. The proposed method is verified by simulation results,

  • PDF

DC-Link Voltage Control of Distribution Static Compensator using Ripple Voltage Extraction (맥동 전압 추출을 통한 배전용 정지형 보상기의 직류링크 전압제어)

  • Kim, Ho-Yeol;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • DSTATCOM is active filter that reduces nonlinear and unbalanced currents. Researches about DSTATCOM are mainly divided two parts, one is the reference value calculation of compensation current depending on the calculation of the load-side average active power and dc-link capacitor average voltage, the other part is actual current control depending on the reference value of compensation current. This paper proposes a calculation of dc-link capacitor average voltage ripple voltage extraction instead of conventional method using LPF. The utility of the proposed algorithm is verified through the theoretical analysis and the experiment under unbalance loads and non-linear load.

A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverters at low modulation index (Neutral-Point-Clamped 인버터의 저 변조지수에서 DC 링크 전압 균형을 위한 간단한 컨트롤 기법)

  • Ma C.S.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.560-564
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM(DPWM) to balance the DC-link voltage of three-level Neutral-Point-Clamped(WPC) inverters at low modulation index. New DPWM methods in multi-level inverter are also introduced. The proposed DPWM method changes the path and duration to flow the neutral point current out of or into neutral point of the DC-link and it makes the overall fluctuation of the DC-link voltage zero during a sampling time of reference voltage vector. Therefore, the voltage of the DC-link can be balanced fairly well and also the voltage ripple of the DC-link is reduced significantly. Moreover, comparing with conventional methods, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by experiment

  • PDF

Instantaneous Control of a Single-phase PWM Converter Considering the Voltage Ripple Estimate (전압 리플 추정을 고려한 단상 PWM 컨버터의 순시치 제어)

  • 김만기;이우철;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.29-34
    • /
    • 1997
  • In this paper, instantaneous controller of a single-phase PWM converter is realized using DSP. The stable PI gain of the input current and the DC link voltage control system is designed. The DC link voltage control system can be designed in continuous- time domain. But as for the input current control system, the descretizing effect cannot be ignored so it must be designed in descrete-time domain considering the calculation time. The capacitance estimating algorithm which can be acquired through the ripple voltage is proposed. By this algorithm the DC link capacitance can be estimated even under the transient state. Experimental results show the input power factor of 99.1% and the voltage variation rate of $\pm$5% according to the load variation.

  • PDF

The Finite Element Methodology of Switched Reluctance Motor Considering DC Link Voltage Ripple and Freewheeling Diodes (DC Link 전압리플과 환류 다이오드를 고려한 스위치드 릴럭턴스 전동기의 유한요소해석 기법)

  • Choi Jae-Hak;Kim Tae Heoung;Jang Ki-Bong;Lee Sang-Don;Lee Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This paper presents a characteristic analysis of switched reluctance motor (SRM) considering switching control method and DC link voltage ripple by using time-stepped voltage source finite element method in which the magnetic field is combined with drive circuit. We also examine the influence of freewheeling diodes and DC link voltage ripple on the performance of the SRM such as torque ripples and radial force on the surface of the teeth. The freewheeling diodes and DC link voltage ripples must be taken into account to predict the performance of SRM.

Fault Diagnosis and Fault-Tolerant Control of DC-link Voltage Sensor for Two-stage Three-Phase Grid-Connected PV Inverters

  • Kim, Gwang-Seob;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.752-759
    • /
    • 2013
  • This paper proposes a method for fault diagnosis and fault-tolerant control of DC-link voltage sensor for two-stage three-phase grid-connected PV inverters. Generally, the front-end DC-DC boost converter tracks the maximum power point (MPP) of PV array and the rear-end DC-AC inverter is used to generate a sinusoidal output current and keep the DC-link voltage constant. In this system, a sensor is essential for power conversion. A sensor fault is detected when there is an error between the sensed and estimated values, which are obtained from a DC-link voltage sensorless algorithm. Fault-tolerant control is achieved by using the estimated values. A deadbeat current controller is used to meet the dynamic characteristic of the proposed algorithm. The proposed algorithm is validated by simulation and experiment results.

Optimal PAM Control for a Buck Boost DC-DC Converter with a Wide-Speed-Range of Operation for a PMSM

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Senjyu, Tomonobu;Yona, Atsushi;Saber, Ahmed Yousuf
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.477-484
    • /
    • 2010
  • A pulse width modulation-voltage source inverter (PWM-VSI) is used for variable speed permanent magnet synchronous motor (PMSM) drives. The PWM-VSI fed PMSM has two major disadvantages. Firstly, the PWM-VSI DC-link voltage limits the magnitude of the PMSM terminal voltage. As a result, the motor speed is restricted. Secondly, in a low speed range, the PWM-VSI modulation index declines. This is caused by a high DC-link voltage and a low terminal voltage ratio. As a result, the distortion of the voltage command and the stator current are increased. This paper proposes an optimal pulse amplitude modulation (PAM) control which can adjust the inverter DC-link voltage by using a buck-boost DC-DC converter. At a low speed range, the proposed system can reduce the distortion of the voltage command, which improves the stator current waveform. Also, the allowable speed range is extended. In order to verify the proposed method, experimental results are provided to confirm the simulation results.

A Study on the Affected of DC-Link Voltage Balance Control of the Vienna Rectifier Linked With the Input Series Output Parallel LLC Converter (직렬 입력 병렬 출력 연결된 LLC 컨버터를 갖는 비엔나 정류기의 DC 링크 전압 평형 제어에 관한 연구)

  • Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Due to the advantage of reducing the voltage applied to the switch semiconductor, the input series and output parallel combination is widely used in systems with high input voltage and large output current. On the other hand, the LLC converter is widely used as a high-efficiency power converter, and when connected by ISOP combination, there is a possibility that input voltage imbalance may occur due to a mismatch of passive devices. To avoid damaging the switching device, this study analyzed the DC-link voltage imbalance of a high-capacity supply using an ISOP LLC converter. In addition, the case where DC-link unbalance control was applied and the case not applied was analyzed respectively. Based on this analysis, an initial start-up algorithm was proposed to prevent input power semiconductor device damage due to DC-link over-voltage. The effectiveness of the proposed algorithm has been verified through simulations and experiments.

A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors (교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive (3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상)

  • Park, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.