• 제목/요약/키워드: DC link inverter

검색결과 449건 처리시간 0.031초

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

차단전압 균형과 넓은 부하범위를 갖는 새로운 3-레벨 ZVS PWM DC-DC 컨버터 (A Novel Three-Level ZVS PWM Inverter Topology for High-Voltage DC/DC Conversion Systems with Balanced Voltage Sharing and Wider Load Range)

  • 송인호;유상봉;서범석;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.71-75
    • /
    • 1996
  • As the Three-level ZVS PWM DC-DC converter operates likewise full-bridge ZVS PWM DC-DC converter and the blocking voltage of each switching device is a half of the DC-link voltage, it is suitable for the high imput voltage applications. However, it has some problems as follows; The blocking voltage of each devices is unbalanced and it causes the power losses of the inner switching devices to be increased. Also, it has narrow load range so that the switching losses and the efficiency are reduced as it goes to the light load. This paper presents an nove Three-level ZVS PWM DC-DC converter, which can reduce the overvoltage of the outer switches, eliminate the unbalance of the voltage sharing between the switches at turn-off due to the stray inductances, and operate from no load to full load. The characteristics and the performances of the proposed Three-level ZVS PWM DC-DC converter are verified by simulation and experimental results

  • PDF

PI Controlled Active Front End Super-Lift Converter with Ripple Free DC Link for Three Phase Induction Motor Drives

  • Elangovan, P.;Mohanty, Nalin Kant
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.190-204
    • /
    • 2016
  • An active front end (AFE) is required for a three-phase induction motor (IM) fed by a voltage source inverter (VSI), because of the increasing need to derive quality current from the utility end without sacrificing the power factor (PF). This study investigates a proportional-plus-integral (PI) controller based AFE topology that uses a super-lift converter (SLC). The significance of the proposed SLC, which converts rectified AC supply to geometrically proceed ripple-free DC supply, is explained. Variations in several power quality parameters in the intended IM drive for 0% and 100% loading conditions are demonstrated. A simulation is conducted by using MATLAB/Simulink software, and a prototype is built with a field programmable gate array (FPGA) Spartan-6 processor. Simulation results are correlated with the experimental results obtained from a 0.5 HP IM drive prototype with speed feedback and a voltage/frequency (V/f) control strategy. The proposed AFE topology using SLC is suitable for three-phase IM drives, considering the supply end PF, the DC-link voltage and current, the total harmonic distortion (THD) in supply current, and the speed response of IM.

A Commutation Torque Ripple Reduction for Brushless DC Motor Drives

  • Won, Chang-hee;Song, Joong-Ho;Ick Choy
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권4호
    • /
    • pp.174-182
    • /
    • 2002
  • This paper presents a comprehensive study on reducing commutation torque ripples generated in brushless DC motor drives with only a single do-link current sensor provided. In such drives, commutation torque ripple suppression techniques that are practically effective in low speed as well as high speed regions are scarcely found. The commutation compensation technique proposed here is based on a strategy that the current slopes of the incoming and the outgoing phases during the commutation interval can be equalized by a proper duty-ratio control. Being directly linked with deadbeat current control scheme, the proposed control method accomplishes suppression of the spikes and dips superimposed on the current and torque responses during the commutation intervals of the inverter. Effectiveness of the proposed control method is verified through simulations and experiments.

멀티레벨 인버터의 커패시터 전압 균형을 위한 스위칭 기법 (The switching method for Voltage Balance of Capacitor in a Multi-level Inverter)

  • 왕지명;박병우;이상혁;박성준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.45-46
    • /
    • 2012
  • 본 논문에서는 멀티레벨 인버터에서 발생하는 DC Link 단의 커패시터 불 평형 문제를 해결하고자 새로운 DC 전압 균형을 위한 스위칭 방식에 대해 제안한다. 제안한 방식은 DC-Link 단에 위치한 각각의 커패시터들의 전압을 센싱하고 이를 PI제어를 통해 스위칭 신호를 제어함으로써 각각의 커패시터에 걸리는 전압을 균일하게 만듦으로써, 커패시터단의 전압 불 평형을 개선하였으며, 이를 3상 2레벨 멀티-레벨 인버터를 이용한 시뮬레이션 결과를 통해 본 논문의 타당성을 검증하였다.

  • PDF

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

교류 전동기의 고효율 운전을 위한 3상 인버터의 입력전력 추정 기법 (Input Power Estimation Method of a Three-phase Inverter for High Efficiency Operation of an AC Motor)

  • 김도현;김상훈
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.445-451
    • /
    • 2019
  • An input power estimation method of a three-phase inverter for the high-efficiency operation of AC motors is proposed. Measuring devices, such as DC link voltage and input current sensors, are required to obtain the input power of the inverter. In the proposed method, the input power of the inverter can be estimated without the input current sensor by using the phase current information of the AC motor and the switching pattern of the inverter. The proposed method is more robust to parameter error than conventional method. The validity of the input power estimation method is verified through experiments conducted on a 1 kW permanent-magnet synchronous motor drive system.

PWM 전류형인버터를 이용한 계통연계형 태양광 발전시스템 (Utility Interactive Photovoltaic Generation System using PWM Current Source Inverter)

  • 박춘우;성낙규;이승환;강승욱;이훈구;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.109-112
    • /
    • 1996
  • In this paper, we composed utility interactive photovoltaic generation system of current source inverter, and controlled that low harmonic and high power factor are hold by supposing control and compensation method which is concerned with synchronous signal distortion and modulation delay. And we put parallel resonant circuit into dc link, so, magnitude of direct reactance was reduce by restraining direct current pulsation which had accumulation of pulsating power in alternating electrolytic condenser. Also we controlled that modulation factor is operated around maximum output of solar cell.

  • PDF

축소형 부하불평형 보상장치의 개발 및 시험 (Development and Operation of Small-Scaled Equipment for Improving Unbalanced Load in Railway)

  • 김주락;한문섭;강문호;김정훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.809-815
    • /
    • 2007
  • This paper proposes the analysis on new equipment for power quality in electrified railway. The proposed equipment consists of series and parallel inverter. Each inverter is connected by capacitor as dc link. This structure can be compensated for active and reactive power in catenary through transformer.

  • PDF