• Title/Summary/Keyword: DC link current

Search Result 511, Processing Time 0.024 seconds

Reactive Power Control of Single-Phase Reactive Power Compensator for Distribution Line (배전선로용 단상 무효전력 보상기의 무효전력제어)

  • Sim, Woosik;Jo, Jongmin;Kim, Youngroc;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • In this study, a novel reactive power control scheme is proposed to supply stable reactive power to the distribution line by compensating a ripple voltage of DC link. In a single-phase system, a magnitude of second harmonic is inevitably generated in the DC link voltage, and this phenomenon is further increased when the capacity of DC link capacitor decreases. Reactive power control was performed by controlling the d-axis current in the virtual synchronous reference frame, and the voltage control for maintaining the DC link voltage was implemented through the q-axis current control. The proposed method for compensating the ripple voltage was classified into three parts, which consist of the extraction unit of DC link voltage, high pass filter (HPF), and time delay unit. HPF removes an offset component of DC link voltage extracted from integral, and a time delay unit compensates the phase leading effect due to the HPF. The compensated DC voltage is used as feedback component of voltage control loop to supply stable reactive power. The performance of the proposed algorithm was verified through simulation and experiments. At DC link capacitance of 375 uF, the magnitude of ripple voltage decreased to 8 Vpp from 74 Vpp in the voltage control loop, and the total harmonic distortion of the current was improved.

Novel SRM Drive System Based on the DC-link Current Information (DC-link전류정보를 기반으로 한 새로운 SRM 구동시스템)

  • Kim Ju-Jin;Kim Seong-Gon;Lee Ju-Hwan;Kim Tae-Woong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.6-10
    • /
    • 2004
  • This paper newly proposes the SRM drive system based on DC-link current information, from which the phase currents can be estimated in accuracy and also they can be used in driving SRM instead of the phase currents. Comparing to the general drive system based on the phase current information, it is verified through the simulation(which are peformed by RMxprt and Simplorer) that the proposed SRM drive system has the good performance in dynamic and steady-state responses of the speed control. Using the DC-link current information, all of the multi-phase currents can be easily estimated in driving the SRM.

  • PDF

DC-Link Voltage Control of Distribution Static Compensator using Ripple Voltage Extraction (맥동 전압 추출을 통한 배전용 정지형 보상기의 직류링크 전압제어)

  • Kim, Ho-Yeol;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • DSTATCOM is active filter that reduces nonlinear and unbalanced currents. Researches about DSTATCOM are mainly divided two parts, one is the reference value calculation of compensation current depending on the calculation of the load-side average active power and dc-link capacitor average voltage, the other part is actual current control depending on the reference value of compensation current. This paper proposes a calculation of dc-link capacitor average voltage ripple voltage extraction instead of conventional method using LPF. The utility of the proposed algorithm is verified through the theoretical analysis and the experiment under unbalance loads and non-linear load.

A Performance Improvement Method of PMSM Torque Control Considering DC-link Voltage Variation (DC-link 전압변동을 고려한 PMSM 토크제어의 성능 향상 방법)

  • Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.112-122
    • /
    • 2014
  • This paper proposes a PMSM torque control method considering DC-link voltage variation and friction torque. In general EV/HEV application, two dimensions look-up table(2D-LUT) is used for reference current generation due to its stable and robust torque control performance. Conventionally, this 2D-LUT is established by flux-torque table to overcome the DC-link voltage variation. However, the flux table establishment is more complex than the speed table establishment. Moreover, one flux data reflects several speed conditions in variable DC-link voltage, friction torque cannot be considered by using the flux table. In this paper, speed-torque 2D-LUT is used for current reference generation. With this table, PMSM torque control is well achieved regardless of DC-link voltage variation by the proposed control method. Simulation and experimental results validate improvement of torque control error through friction torque compensation.

DC-Link Voltage Ripple Analysis of Minimum Loss Discontinuous PWM Strategy in Two-Level Three-Phase Voltage Source Inverters (최소 손실 불연속 변조 기법에 따른 2레벨 3상 전압원 인버터의 직류단 전압 맥동 분석)

  • Lee, Junhyuk;Park, Jung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2021
  • DC-link capacitors are one of the main components in two-level three-phase voltage source inverters (VSIs); they provide the pulsating input current and stabilize the vacillating DC-link voltage. Ideally, the larger the capacitance of DC-link capacitors, the better the DC-link voltage stabilizes. However, high capacitance increases the cost and decreases the power density of VSI systems. Therefore, the capacitance should be chosen carefully on the basis of the DC-link voltage ripple requirement. However, the DC-link voltage ripple is dependent on the pulse-width modulation (PWM) strategy. This study especially presents a DC-link voltage ripple analysis when the minimum loss discontinuous PWM strategy is applied. Furthermore, an equation for the selection of the minimum capacitance of DC-link capacitors is proposed. Experimental results with R-L loads are also provided to verify the effectiveness of the presented analysis.

A New Approach for Constant DC Link Voltage in a Direct Drive Variable Speed Wind Energy Conversion System

  • Jeevajothi, R.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.529-538
    • /
    • 2015
  • Due to the high efficiency and compact mechanical structure, direct drive variable speed generators are used for power conversion in wind turbines. The wind energy conversion system (WECS) considered in this paper consists of a permanent magnet synchronous generator (PMSG), uncontrolled rectifier, dc-dc boost converter controlled with maximum power point tracking (MPPT) and adaptive hysteresis controlled voltage source inverter (VSI). For high utilization of the converter's power capability and stabilizing voltage and power flow, constant DC-link voltage is essential. Step and search MPPT algorithm which senses the rectified voltage ($V_{DC}$) alone and controls the same is used to effectively maximize the output power. The adaptive hysteresis band current control is characterized by fast dynamic response and constant switching frequency. With MPPT and adaptive hysteresis band current control in VSI, the DC link voltage is maintained constant under variable wind speeds and transient grid currents respectively.

Estimation of ESR in the DC-Link Capacitors of AC Motor Drive Systems with a Front-End Diode Rectifier

  • Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.411-418
    • /
    • 2015
  • In this paper, a new method for the online estimation of equivalent series resistances (ESR) of the DC-link capacitors in induction machine (IM) drive systems with a front-end diode rectifier is proposed, where the ESR estimation is conducted during the regenerative operating mode of the induction machine. In the first place, a regulated AC current component is injected into the q-axis current component of the induction machine, which induces the current and voltage ripple components in the DC-link. By processing these AC signals through digital filters, the ESR can be estimated by a recursive least squares (RLS) algorithm. To acquire the AC voltage across the ESR, the DC-link voltage needs to be measured at a double sampling frequency. In addition, the ESR current is simply reconstructed from the stator currents and switching states of the inverter. Experimental results have shown that the estimation error of the ESR is about 1.2%, which is quite acceptable for condition monitoring of the capacitor.

Capacitance Estimation Method of DC-Link Capacitors for BLDC Motor Drive Systems

  • Moon, Jong-Joo;Kim, Yong-Hyu;Park, June-Ho;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.653-661
    • /
    • 2016
  • This paper proposes a capacitance estimation method of the dc-link capacitor for brushless DC motor (BLDCM) drive systems. In order to estimate the dc-link capacitance, the BLDCM is operated in quadrant-II or -IV among four-quadrant operation. Quadrant-II and -IV are called reverse braking and forward braking, respectively. During the braking operation of the BLDCM, the capacitor is charged by the phase current and then the voltage is increased during the braking operation time. The capacitor current and voltage can be obtained by using the phase current sensor of BLDCM and the dc-link voltage sensor. The capacitance and be easily obtained by the voltage equation of the capacitor. The proposed method guarantees the reliable and simple calculation of the dc-link capacitance without additional hardware system except several the sensors already installed for the motor control system. The effectiveness of the proposed method is verified through both the simulation and experimental results.

Performance Improvement of DC-link Control for a Dynamic Voltage Restorer with Power Feedforward Compensation (전력 전향보상을 통한 동적전압보상기 직류단 전압 제어의 성능 향상)

  • Ji, Kyun Seon;Jou, Sung Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1297-1305
    • /
    • 2015
  • This paper proposes a power feedforward technique for the performance improvement of DC-link voltage control in the dynamic voltage restorer (DVR). The DC-link Voltage is able to be unstable for an instant owing to any change in the load and voltage sag. The distortion of the DC-link voltage leads to the negative influence on the performance of DVR. To mitigate the distortion of the DC-link voltage, the power feedforward component is calculated by the load power and the grid voltage, and then it is added to the reference current of the conventional DC-link voltage controller. By including output power feedforward component on the DC-link controller, the DC-link voltage can settle down more quickly than when the conventional DC-link voltage controller applied. The proposed technique was validated through the simulation and experimental results.

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.