• Title/Summary/Keyword: DC breaker

Search Result 100, Processing Time 0.033 seconds

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.

760 V-Class DC Switch Breaking Characteristics Using Tandem Type Magnet Extinguisher (탠덤형 자석 소호기를 사용한 760V급 직류 개폐기의 차단 특성)

  • Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.175-179
    • /
    • 2022
  • Magnetic arc extinguishing technology is effective as an extinguishing device for low-voltage direct current (DC) circuit breakers with a resistive load of ≤4 kW. The separation distance between the magnet and the electrical contact must be shortened to increase the magnetic arc extinguishing force. However, if the magnet is installed too close to the electrical contact points, the magnet is exposed to high temperatures due to the arc current generated when the load current is cut off and the magnetism is lost. To solve this problem, the effective magnetic flux density at the electrical contact can be maintained high by placing the arc extinguishing magnet in a tandem structure with the electrical contact point between them, and the proper separation distance between the contact points and the magnet can be maintained. In addition, an electric arc extinguishing technology that emits arc energy using a series circuit of diode and resistor is used to suppress the continuous arc voltage generated by the inductive load. For the proposed circuit breaker, the breaking characteristics are analyzed through the breaking test for the DC load of the 760 V level, the load power of 4 kW, and the time constant of 5 ms, and an appropriate arc extinguishing design guideline is proposed.

Performance and Construction of Infrastructure of Low-Voltage Circuit-Breaker for DC (저압 직류차단기 성능 및 기반구축)

  • Ahn, Sang-Pil;Kim, Bong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.728_729
    • /
    • 2009
  • 최근 태양광 발전설비 및 신재생에너지 보급이 확대됨에 따라 저압 직류차단기가 설치되고 있는 실정이다. 본 논문에서는 저압 직류차단기의 성능이 교류차단기와 어떻게 다른가를 분석하고, 더 나아가 국내 직류차단기에 대한 시험 기반구축의 현실과 향후 필요한 대책을 제시하였다.

  • PDF

Statistical analysis of CB making current in large seals industrial load using EMTDC (EMTDC를 활용한 자가용 수용가 차단기 투입전류 확률해석)

  • Yoon, Jae-Young;Choi, Heung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.67-69
    • /
    • 2002
  • This paper presents the statistical analysis of the circuit breaker's making current in large sacle industrical loads using EMTDC. Typically, the making current includes DC components as the phase angel of making instances varies and represents as a instantaneous valus not rms. Consequently, in this paper, the statistical analysis results of making current and steady state fault current for typical industrial loads presents.

  • PDF

The study for function and operation of the excitation equipment for short circuit generator (단락발전기 용 여자장치의 조작과 기능에 대한 고찰)

  • Kim, Sun-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.735-736
    • /
    • 2008
  • There are many equipments for the Short Circuit Test, for example Short Circuit Generator, Induction Motor, Sequence Timer, CLR, Back Up Breaker, Making Switch and Excitation Equipment etc. Gradually an allowable tolerance of the short circuit test voltage is become smaller by the standards for short circuit test. The excitation equipment of short circuit generator is very important for test voltage is adjusted by the excitation equipment. Especially the excitation equipment must be possessed character of exactitude, durability and inalterability because some times around 10,000 times opening and closing short circuit test is requested by clint, which must be done within one minute. The purpose of this study for function and operation of the excitation equipment which rated DC voltage is 1,000V, rated DC current is 300A, rated out put is 30kW and type is YNEX 97S-441/609, is to help operation of short circuit generator.

  • PDF

Simulation Study of Arc Driving Force of DC High Speed Circuit Breaker (DC 고속도 차단기의 아크 구동력 향상을 위한 구동부 형상 시뮬레이션 연구)

  • Lim, Sung-Woo;Lee, Jong-Gun;Khan, Umer Amir;Lee, Bang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.594-595
    • /
    • 2015
  • 본 논문에서는 직류차단기 내부 아크 러너 구조에 따라 아크에 작용하는 구동력 차이에 대한 연구를 수행하였다. 컴퓨터 시뮬레이션을 통해 아크 러너 기울기를 변화에 따라 아크 구동력을 계산하였으며, 결과 값들에 대한 비교 분석을 통해 아크 구동력 차이의 발생을 확인하였다. 구동력 차이의 발생 원리를 알아보고 아크구동력 향상 방안에 대해 연구하였으며, 결과 방안을 차단시간 단축 요소로써 활용할 수 있을 것으로 기대한다.

  • PDF

Surge current endurance evaluation of Thyristor (사이리스터(Thyristor)의 서지(Surge) 전류 내력 평가에 관한 연구)

  • Jeong, Jong-Kyou;Seo, Dong-Woo;Jung, Hong-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.253-254
    • /
    • 2020
  • High Voltage Direct Current (HVDC) 시스템은 고압 직류송전을 위한 시스템이다. 고압 직류 송전을 위해서는 전력변환기가 교류전력을 직류전력으로 변환해주어야 하는데, 최근에는 모듈형 멀티레벨 컨버터(Modular Multilevel Converter, MMC)가 많이 적용되고 있다. MMC는 다수의 서브모듈이 직렬로 구성되어 있으며 DC-link단에 대용량 커패시터가 없다. MMC의 심각한 사고 중에 하나는 DC측 전력케이블의 단락사고로 시스템에 따라서 수십 kA 정도의 사고전류가 AC측 CB(Circuit Breaker)가 열리기 전까지 수십 ms에서 수백 ms동안 흐른다. 만약 하프브릿지 회로의 서브모듈로 구성된 컨버터에 별도 보호장치가 없으면 단락전류는 서브모듈의 하단 다이오드를 통해서 흐르게 되어 소손되게 된다. 이를 방지하기 위해 단락전류를 바이패스(by-pass) 시키기 위한 별도의 사이리스터를 추가하는데 이 기기의 사양은 DC 단락 전류를 충분히 견딜 수 있어야 한다. 본 논문에서는 사이리스터의 서지 전류 내력을 평가하기 위해 사양을 분석하고 시뮬레이션과 실험을 통해서 검증하였다.

  • PDF

Contactless DC Circuit Breakers Using MOS-controlled Thyristors (전력용 사이리스터 MCT를 이용한 무접점 직류차단기)

  • Sim, D.Y.;Kim, C.D.;Nho, E.C.;Kim, I.D.;Kim, Y.H.;Jang, Y.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.45-50
    • /
    • 2000
  • Circuit breakers have traditionally employed mechanical methods to interrupt excessive currents. According to power semiconductor technology advances in power electronic device, some mechanical breakers are replaced with solid state equivalents. Advantages of the contactors using semiconductor devices include faster fault interrupting, fault current limiting, no arc to contain or extinguish and intelligent power control, and high reliability. This paper describes the design of a static $100{\pm}10%V$ and 0 to 50A DC self-protected contactor with 85A "magnetic tripping" and 100A interruption current at $2.2A/{\mu}s$ short circuit of load condition using a new power device the HARRIS MCT (600V-75A). The self-protection circuit of this system is designed by the classical ZnO varistor for energy absorption and turn-off snubber circuit ("C" or "RCD") of the MCT.

  • PDF

A study on the efficient operation program of digital protection relay in DC feeder system (DC 급전계통의 디지털 보호계전기의 합리적 운용방안 검토)

  • Lee, Kyung-Goo;Hyun, Yong-Sub;Hong, Sung-Lae;Baek, Jae-Woo;Min, Yong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.946-958
    • /
    • 2009
  • Lately, Seoul metro is changing transformation facilities which have been operated in subway line 1 and 2 for a long duration of time. Although the exiting protection relays in DC feeder system have such several functions as 76I, 50, 85, and 64P, the new protective relay have a great variety of functions such as 76I, 76D, DDL-I, DDL-T(Imin), 85, and 64P, as well as record and save various events and accident wave in order to review and analyze the working causes of the protective system. However, because the new digital relays are not used properly for protective propose, there are the cases that the electric accident is deteriorated more. Therefore, in this paper, we will describe that making the use studying installation intention, direction, and setting up value of the protection relay in DC breaker operation not only prevents from making the electric accident worse but also shows the efficient operation method of direct current protection system.

  • PDF

Design and Analysis of Large Induction Motor Control Coping with Voltage Sag (순간전압강하 극복을 위한 대용량 유도전동기 제어방식 설계 및 해석)

  • Cho, Sung-Don;Lim, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1056-1058
    • /
    • 1998
  • Voltage dips caused by transmission system faults are usually of a short duration. High speed relaying and breaker operation will typically limit the disturbance to 0.1 seconds. Most motor controllers obtain their control power directly from the bus by means of a control transformer. Under this condition, a voltage dip can cause the contactor to drop out. disconnecting the motor from the line. The rapid re-energizing of the controller is in effect a fast reclosure which may result in motor damage. The time delay re-energizing of controller will result in a greater loss of speed and possibly loss of stability. Other means of controller can be used to prevent the motor from being disconnected from line during the fault. This can be accomplished by DC power controller or mechanically latched controller. This paper demonstrates that DC power controller or mechanically latched type controller to prevent the motor from being disconnected from line during the fault is, the most effective in minimizing speed reduction, transient motor current, transient motor torque and transient shaft torque by EMTP calculation.

  • PDF