• Title/Summary/Keyword: DC arc test

Search Result 23, Processing Time 0.026 seconds

DC Arc Characteristics Analysis according to U1699B Test Standardof the Status (태양광발전설비 DC 아크특성 분석)

  • Wan-Su Kim;Kwang-Muk Park
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.118-123
    • /
    • 2023
  • The main cause of solar facility fires is arc, and in the last 3 years ('16 to '18), about 80% of domestic solar facility fires have been caused by arcs. The capacity of solar power facilities installed around the world continues to increase, and fires caused by arcs are also expected to increase as the solar power generation facilities that were initially installed become obsolete, In this paper, an arc generation test was conducted based on the UL1699B test standard. As a result of the test, the arc generation satisfied the minimum arc current according to the test conditions, and DC arc characteristics were analyzed through data such as arc voltage and arc current according to variables such as speed of moving electrodes and electrode spacing.

Effects of Tungsten Particle Size and Nickel Addition in DC arc Resistance of Cu-W Electrode

  • Kim, Bong-Seo;Jeong, Hyun-Uk;Lee, Hee-Woong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.68-72
    • /
    • 2004
  • The performance of copper-tungsten for electrodes used in an ultra high voltage interruption system was evaluated by means of an interruption test, which requires a large-scale apparatus and high cost. In this study, prior to the interruption test, the characteristics of a Cu-W electrode were estimated through the DC arc test, which is a simple, low cost procedure. The DC arc characteristics of a 20wt%Cu-80wt%W electrode were investigated with the change of tungsten powder size distribution and the addition of nickel. In specimens containing a high volume fraction of large sized tungsten particles, the relative density and hardness of sintered Cu-W electrodes increased while the electrical conductivity and the DC arc resistance decreased. Furthermore, the relative density became enhanced with the increase of the amount of nickel while the hardness and electrical conductivity diminished and the DC arc resistance worsened.

Effect of Nickel addition in DC arc test of Cu-W electrode (Cu-W 전극의 DC Arc 시험에 있어서 Nickel 첨가 영향)

  • Kim, Bong-Seo;Chung, Hyeon-Wook;Lee, Hee-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.11-14
    • /
    • 2003
  • Sintered Cu-W has been used for the electrode of GIS for interrupting the abnormal current. In this study the effect of Ni addition in Cu-W electrode was investigated. Cu-W electrodes used contains 0.1~0.2wt% Ni and were conducted the experiments which was attacked by DC arc test (70V-70A) for 300 times periodically. As the contents of Ni in Cu-W electrode increase, the hardness and electrical conductivity were decreased. The weight change ($\Delta$mg) of electrode after DC arc test increased with increasing Ni contents and test times. The hardness and electrical conductivity of electrode after DC arc test were decreased compared with non-arc affected electrode, which was owing to the defects near surface of electrode and degradation by arc heat. It was considered that Cu in the Cu-W electrode was scattered to all directions by arc heat, therefore, the electrodes were damaged and deformed in the surface and cross-section of electrode. It is difficult to estimate directly the characteristics of Cu-W electrode for GIS related with high voltage and current from the results of DC arc test conducted in this study. However, the results of the effect of Ni addition in Cu-W electrode could be applied for the research of electrode for GIS.

  • PDF

Experiment on DC Circuit Breaker for Inductive Load by Improved Magnetic Arc-extinguisher and Arc-Attenuation Circuit (개선된 자기소호회로와 아크전압 억제회로를 사용한 유도성 부하의 직류차단 특성 실험)

  • Lee, Sung-Min;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.495-499
    • /
    • 2012
  • Recently, DC distribution systems become hot issues since DC type loads increase rapidly according to the expansion of IT equipment such as computers, servers, and digital devices; DC type loads will cover 50% for all electricity loads in 2020 which was mere 10% in 2000. DC distribution systems are also accelerated by the expansion of renewable power systems since they are easy to be interfaced with DC grids rather than AC grids. However, removing the fault current in DC grids is comparably difficult since the current in DC grids has non zero-crossing point like in AC grids. Thus, developing dedicated DC circuit breakers for DC grids is necessary to get safety for human and electrical facilities. Magnet arc extinguishing method is proper to small size DC circuit breakers. However, simple Magnet arc extinguishing method is not enough to break inductive fault currents. This paper proposed a novel DC circuit breaker against inductive fault current defined by IEEE C37.14-2004 Standard for Low-Voltage DC Power Circuit Breakers Used in Enclosures. The performance of the proposed DC circuit breaker was verified by an experimental circuit breaker test system built in this research.

Development of DC Circuit Breaker using Magnet Arc Extinguisher (자기적 아크소호 기법을 이용한 직류 차단기 개발)

  • Lee, Sung-Min;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • In recent years, DC distribution systems are becoming hot issue due to the increase in digital loads and DC generation systems according to the expansion of renewable energy technologies. However, removing the fault current in DC grids is comparably difficult since the current in DC grids has no zero-crossing point like in AC grids. Thus, developing dedicated DC circuit breakers for DC grids is necessary to get safety for people and electrical facilities. This paper proposes magnet arc extinguishing method to develop a 300[$V_{DC}$]/10[A] DC circuit breaker. The performance of the proposed DC circuit breaker was verified by an experimental circuit breaker test system built in this research.

760 V-Class DC Switch Breaking Characteristics Using Tandem Type Magnet Extinguisher (탠덤형 자석 소호기를 사용한 760V급 직류 개폐기의 차단 특성)

  • Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.175-179
    • /
    • 2022
  • Magnetic arc extinguishing technology is effective as an extinguishing device for low-voltage direct current (DC) circuit breakers with a resistive load of ≤4 kW. The separation distance between the magnet and the electrical contact must be shortened to increase the magnetic arc extinguishing force. However, if the magnet is installed too close to the electrical contact points, the magnet is exposed to high temperatures due to the arc current generated when the load current is cut off and the magnetism is lost. To solve this problem, the effective magnetic flux density at the electrical contact can be maintained high by placing the arc extinguishing magnet in a tandem structure with the electrical contact point between them, and the proper separation distance between the contact points and the magnet can be maintained. In addition, an electric arc extinguishing technology that emits arc energy using a series circuit of diode and resistor is used to suppress the continuous arc voltage generated by the inductive load. For the proposed circuit breaker, the breaking characteristics are analyzed through the breaking test for the DC load of the 760 V level, the load power of 4 kW, and the time constant of 5 ms, and an appropriate arc extinguishing design guideline is proposed.

Equivalent three-phase synthetic making test for medium voltage circuit breaker of distribution system using DC power (직류전원을 이용한 배전급 차단기의 등가 3상 합성투입시험법)

  • Park, Byung-Rak;Jo, Man-Yong;Kim, Jin-Seok;Shin, Hee-Sang;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.105-113
    • /
    • 2011
  • The study about three-phase synthetic making test using DC power has been performed in order to increase the making test capacity on Vacuum Circuit Breaker. And, it made possible to solve the limitations that short-circuit testing facilities can not fulfill the testing requirements of VCB exceeding three-phase 36[kV] 31.5[kA]. By using DC power and high speed spark-gap switch, this method made the equivalence with the pre-arc that occurred during the making process under the fault condition of power system. As results, KERI(Korea Electrotechnology Research Institute) could have capacity to carry out type test for VCB under three-phase 52[kV] 40[kV], which satisfies the IEC Standard.

DEVELOPMENT OF DIGITAL DC-ARC WELDING MACHINE (디지털 DC-ARC 용접기의 개발)

  • Park Ba-Da;Dung Ngo Manh;Kim Sang-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.71-72
    • /
    • 2006
  • This paper introduces the results of the development of a new mobile Digital DC-arc Welding Machine (DDWM). A simple PI controller is applied to the DDWM to control the output welding current tracking the constant setting current. Furthermore, a hot-start function, an anti-stuck function, a standby mode and an intelligential circuit breaker (ICB) are included in the DDWM. The DDWM increases welding quality and saves more power energy than a conventional welding machine. Because the DDWM is changed from ready mode into the standby mode automatically after 2 minutes interval from this unload start. Then the DDWM is changed into ready mode automatically since it is reused to weld. Mover, the DDWM increases welding qualify, productivity and reduces costs of welding. So, the DDWM can have a great of contribution to the mobile welding industries. The effectiveness of the DDWM was proven by the experimental results and durable test.

  • PDF

DWT-Based Parameter and Iteration Algorithm for Preventing Arc False Detection in PV DC Arc Fault Detector (태양광 직렬 아크 검출기의 오검출 방지를 위한 DWT 기반 파라미터 및 반복 알고리즘)

  • Ahn, Jae-Beom;Lee, Jin-Han;Lee, Jin;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.100-105
    • /
    • 2022
  • This paper applies the arc detection algorithm to prevent the false detection in photo voltaic series arc detection circuit, which is required not only to detect the series arc quickly, but also not falsely detect the arc for the non-arc noise. For this purpose, this study proposes a rapid and preventive false detection method of single peak noise and short noise signals. First, to prevent false detection by single peak noise, Discrete wavelet transform (DWT)-based characteristic parameters are applied to determine the shape and the amplitude of the noise. In addition, arc fault detection within a few milliseconds is performed with the DWT iterative algorithm to quickly prevent false detection for short noise signals, considering the continuity of serial arc noise. Thus, the method operates not only to detect series arc, but also to avoid false arc detection for peak and short noises. The proposed algorithm is applied to real-time serial arc detection circuit based on the TMS320F28335 DSP. The serial arc detection and peak noise filtering performances are verified in the built simulated arc test facility. Furthermore, the filtering performance of short noise generated through DC switch operation is confirmed.

Development of DC Arc Generator to protect against Malfunctions and Fires caused by Arcing (아크 발생에 따른 고장 및 화재를 보호하기 위한 직류 아크 Generator 개발)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.123-128
    • /
    • 2021
  • As the spread of DC power distribution systems increases, the occurrence of failures and fire accidents are also increasing. In particular, the ESS fire accident, which is a component of the smart grid, and the fire accident of the solar power system, which is a direct current system, are caused by problems in the electrical connection between system components as the supply of new and renewable energy rapidly increases and old facilities increase. An arc that can cause a direct fire by releasing the induced light and heat has been pointed out as one of the causes of fire. Therefore, the problem of such an arc defect is that it is impossible to block an arc accident in advance with the existing overcurrent circuit breaker and earth leakage circuit breaker. In this paper, we intend to develop a test equipment that satisfies international standardization and to develop a DC arc generator to protect against failure and fire caused by arcing.