• Title/Summary/Keyword: DC arc characteristics

Search Result 47, Processing Time 0.021 seconds

Analysis of Serial Arc with DC Current (DC 전류에 의한 직렬 아크 특성 분석)

  • Ban, Gi-Jong;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1700-1701
    • /
    • 2007
  • DC Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this paper, DC arc detection device is designed for the display of DC arc fault current which is occurred in the local electric network with DC Power. This DC arc is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and low frequency. DC Arc current detection device is designed for the display of arc fault current which has the modified arc characteristics.

  • PDF

Operating Characteristics of Arc-induction Type DC Circuit Breaker (아크유도형 DC 차단기의 동작 특성)

  • Park, Sang-Yong;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.981-986
    • /
    • 2018
  • AC(alternating current) CB(circuit breaker) at the fault occurred in the existing AC distribution system is limiting the fault current through zero cross-point. However, DC(direct current) CB does not have zero cross-point. Therefore, arc occurred by on-off operation of DC CB is very huge. Nowadays, many research team are studying the way to decrease breaking time, which is one of the essential conditions in DC CB. We suggested novel arc-induction type DC CB in this paper. The proposed arc-induction type DC CB is composed of the mechanical Arc ring and DC CB. We confirmed the operation of arc-induction type DC CB through the HFSS(High Frequency Structure Simulator) 3D simulation program and performed the experiment for operation characteristics. Results showed that arcing time of the arc-induction type DC CB by using induction ring was faster than existing mechanical DC CB. On the transient system, we confirmed stable operation characteristics of the arc-induction type DC CB through the simulation and experimental results. We expect that the proposed arc-induction type DC CB technology is will go to stay ahead of the existing DC CB technology.

A Study of DC Arc Detection Device (DC Arc 검출장치에 대한 연구)

  • Ban, Gi-Jong;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.98-100
    • /
    • 2007
  • DC Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this paper, DC arc detection device is designed for the display of DC arc fault current which is occurred in the local electric network with DC Power. This DC arc is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and low frequency. DC Arc current detection device is designed for the display of arc fault current which has the modified arc characteristics.

  • PDF

A Study of Arc Detection at DC Power System (직류 시스템에서의 아크 검출에 관한 연구)

  • Ban, Gi-Jong;Kim, Jin-Woo;Won, Young-Jin;Lim, Sung-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.461-462
    • /
    • 2007
  • DC Arc is an electric discharge which is occurred in two oppolsite electrode when system operating with DC current appliance. In this paper, DC arc detection system is designed for the display of DC arc fault current which is occurred in the local electric network with DC Power. This DC arc is one of the main causes of electric fire of dc system. Arc fault in electrical network has the characteristics of low current, high impedance and low frequency. DC Arc current detection device is designed for the display of arc fault current which has the modified arc characteristics.

  • PDF

DC Arc Characteristics Analysis according to U1699B Test Standardof the Status (태양광발전설비 DC 아크특성 분석)

  • Wan-Su Kim;Kwang-Muk Park
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.118-123
    • /
    • 2023
  • The main cause of solar facility fires is arc, and in the last 3 years ('16 to '18), about 80% of domestic solar facility fires have been caused by arcs. The capacity of solar power facilities installed around the world continues to increase, and fires caused by arcs are also expected to increase as the solar power generation facilities that were initially installed become obsolete, In this paper, an arc generation test was conducted based on the UL1699B test standard. As a result of the test, the arc generation satisfied the minimum arc current according to the test conditions, and DC arc characteristics were analyzed through data such as arc voltage and arc current according to variables such as speed of moving electrodes and electrode spacing.

Effects of Tungsten Particle Size and Nickel Addition in DC arc Resistance of Cu-W Electrode

  • Kim, Bong-Seo;Jeong, Hyun-Uk;Lee, Hee-Woong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.68-72
    • /
    • 2004
  • The performance of copper-tungsten for electrodes used in an ultra high voltage interruption system was evaluated by means of an interruption test, which requires a large-scale apparatus and high cost. In this study, prior to the interruption test, the characteristics of a Cu-W electrode were estimated through the DC arc test, which is a simple, low cost procedure. The DC arc characteristics of a 20wt%Cu-80wt%W electrode were investigated with the change of tungsten powder size distribution and the addition of nickel. In specimens containing a high volume fraction of large sized tungsten particles, the relative density and hardness of sintered Cu-W electrodes increased while the electrical conductivity and the DC arc resistance decreased. Furthermore, the relative density became enhanced with the increase of the amount of nickel while the hardness and electrical conductivity diminished and the DC arc resistance worsened.

760 V-Class DC Switch Breaking Characteristics Using Tandem Type Magnet Extinguisher (탠덤형 자석 소호기를 사용한 760V급 직류 개폐기의 차단 특성)

  • Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.175-179
    • /
    • 2022
  • Magnetic arc extinguishing technology is effective as an extinguishing device for low-voltage direct current (DC) circuit breakers with a resistive load of ≤4 kW. The separation distance between the magnet and the electrical contact must be shortened to increase the magnetic arc extinguishing force. However, if the magnet is installed too close to the electrical contact points, the magnet is exposed to high temperatures due to the arc current generated when the load current is cut off and the magnetism is lost. To solve this problem, the effective magnetic flux density at the electrical contact can be maintained high by placing the arc extinguishing magnet in a tandem structure with the electrical contact point between them, and the proper separation distance between the contact points and the magnet can be maintained. In addition, an electric arc extinguishing technology that emits arc energy using a series circuit of diode and resistor is used to suppress the continuous arc voltage generated by the inductive load. For the proposed circuit breaker, the breaking characteristics are analyzed through the breaking test for the DC load of the 760 V level, the load power of 4 kW, and the time constant of 5 ms, and an appropriate arc extinguishing design guideline is proposed.

Effect of Nickel addition in DC arc test of Cu-W electrode (Cu-W 전극의 DC Arc 시험에 있어서 Nickel 첨가 영향)

  • Kim, Bong-Seo;Chung, Hyeon-Wook;Lee, Hee-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.11-14
    • /
    • 2003
  • Sintered Cu-W has been used for the electrode of GIS for interrupting the abnormal current. In this study the effect of Ni addition in Cu-W electrode was investigated. Cu-W electrodes used contains 0.1~0.2wt% Ni and were conducted the experiments which was attacked by DC arc test (70V-70A) for 300 times periodically. As the contents of Ni in Cu-W electrode increase, the hardness and electrical conductivity were decreased. The weight change ($\Delta$mg) of electrode after DC arc test increased with increasing Ni contents and test times. The hardness and electrical conductivity of electrode after DC arc test were decreased compared with non-arc affected electrode, which was owing to the defects near surface of electrode and degradation by arc heat. It was considered that Cu in the Cu-W electrode was scattered to all directions by arc heat, therefore, the electrodes were damaged and deformed in the surface and cross-section of electrode. It is difficult to estimate directly the characteristics of Cu-W electrode for GIS related with high voltage and current from the results of DC arc test conducted in this study. However, the results of the effect of Ni addition in Cu-W electrode could be applied for the research of electrode for GIS.

  • PDF

A Study on the Characteristics of Arc Quenching of DC Interruption in the Magnetic Field (자계내에서 직류 차단시 아크소호 특성에 관한 연구)

  • 이동원;송현직;박원주;이광식;이동인
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.66-74
    • /
    • 1996
  • In this paper, the arc currents, voltages and these waveforms were investigated when negative DC high voltages applied to neddle-pane electrodes to study arc quenching phenomena of DC interruption in the. magnetic field. The conclusion of this study are as follows : There are no dynamic arc characteristics in the no magnetic field. Not only dynamic arc characteric but also zero points of arc current which are generated from repeating frequence of arc discharge under the magnetic fields were observed. The more magnetic field were applied, the repeating frequence of arc discharge were more increased..

  • PDF

Characteristics of Interruption Ability in DC Circuit Breaker using Superconducting Coil (초전도 코일을 이용한 DC 회로 차단기의 차단 능력 특성)

  • Jeong, In-Sung;Choi, Hye-Won;Youn, Jeong-Il;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.215-219
    • /
    • 2019
  • Development of DC interruption technology is being studied actively for enhanced DC grid reliability and stability. In this study, coil type superconductor DC circuit breaker was proposed as DC interruption. It is integration technology that combined current-limiting technique using superconductor and cut-off technique using mechanical DC circuit breaker. Superconductor was applied to the coil type. In simulation, Mayr arc model was applied to realize the arc characteristic in the mechanical DC circuit breaker. PSCAD/EMTDC had used to model and perform the simulation. To find out the protection range of coil type superconductor DCCB, the working operation have analyzed based on the rated voltage of DCCB. The results confirmed that, according to apply the limiting device, the protection range was increased in twice. Therefore, the probability of failure of interruption has lowered significantly.