• Title/Summary/Keyword: DC Rotor

Search Result 269, Processing Time 0.03 seconds

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 김종수;강성주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1743-1750
    • /
    • 2003
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as a speed detector, but they increase cost and size of the motor and restrict the industrial drive applications. So in these days, many papers have reported in the sensorless operation of DC motor〔3­5〕. This paper presents a new sensorless strategy using neural networks〔6­8〕. Neural network has three layers which are input layer, hidden layer and output layer. The optimal neural network structure was tracked down by trial and error, and it was found that 4­16­1 neural network structure has given suitable results for the instantaneous rotor speed. Also, learning method is very important in neural network. Supervised learning methods〔8〕 are typically used to train the neural network for learning the input/output pattern presented. The back­propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Rotor Position Estimation of 3-Phase PM BLDC Motor by 2Hall-IC, 1Hall-IC (2Hall-IC, 1Hall-IC를 이용한 PM BLDCM의 회전자 위치검출)

  • Lee, Byoung-Kuk;Kim, Yuen-Chung;Yoon, Yong-Ho;Kim, Hack-Seong;Won, Chung-Yuen;Chun, Jang-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.56-64
    • /
    • 2006
  • Generally, Permanent Magnet Brushless DC Motor(PM BLDC) is necessary the Hall-IC to detect the rotor position. But it will take place the operation standstill of motor or error of rotor position detection according to the circumference temperature, humidity, or limited surroundings. This paper propose the algorithm of rotor position detection only using one or two Hall-IC. Therefore we can estimate information of the others phase in sequence through a rotor instead of using three Hall-IC at 3 phase motor. This paper identify the same characteristics, performance and function of protection circuit by the proposed algorithm with the 3 phase PM BLDC motor in comparison with general method.

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

FEA-based Torque Ripple and Noise Reduction of DC Motor for Automotive Air-Conditioning (유한요소 해석 기반 자동차 공조용 DC모터 토크 리플과 소음 저감에 관한 연구)

  • Hwang, Myeonghwan;Kim, Donghyeon;Yang, Seungjin;Cha, Hyunrok;Han, Jongho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1895-1898
    • /
    • 2017
  • This paper discusses methods for the torque ripple and noise reduction of DC motors for automotive air-conditioning based on electromagnetic field analysis. The target of the motor is a blower motor, and to reduce cogging torque and the torque ripple, the optimum model was selected by deforming the brush or commutator shape. In addition, to reduce the cogging torque, the model design was carried out by applying the skew method and the magnetization method of a magnet to the rotor. For optimization, the shape, material, and drive system of the motor were selected using an electromagnetic field as the analysis tool, and the method of reducing the cogging torque was applied to 4-pole, 12- and 13-slot motors considering the mechanical part. Lastly, this paper confirmed thatthemethod, which proposed how much noise, cogging torque, and vibration are reduced, improves through practical analysis.

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

Control Strategy and Stability Analysis of Virtual Synchronous Generators Combined with Photovoltaic Dynamic Characteristics

  • Ding, Xiying;Lan, Tianxiang;Dong, Henan
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1270-1277
    • /
    • 2019
  • A problem with virtual synchronous generator (VSG) systems is that they are difficult to operate stably with photovoltaic (PV) power as the DC side. With this problem in mind, a PV-VSG control strategy considering the dynamic characteristics of the DC side is proposed after an in-depth analysis of the dynamic characteristics of photovoltaic power with a parallel energy-storage capacitor. The proposed PV-VSG automatically introduces DC side voltage control for the VSG when the PV enters into an unstable working interval, which avoids the phenomenon where an inverter fails to work due to a DC voltage sag. The stability of the original VSG and the proposed PV-VSG were compared by a root locus analysis. It is found that the stability of the PV-VSG is more sensitive to the inertia coefficient J than the VSG, and that a serious power oscillation may occur. According to this, a new rotor model is designed to make the inertial coefficient automatically change to adapt to the operating state. Experimental results show that the PV-VSG control strategy can achieve stable operation and maximum power output when the PV output power is insufficient.

Sensorless Algorithm of Brushless DC Motors Using Terminal Voltage of the One Phase (한상의 단자전압을 이용한 BLDC 전동기 센서리스 알고리즘)

  • Yoon, Yong-Ho;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • This paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor. Depending on the terminal voltage sensing rotor position, active filter is used for position information. This leads to a significant reduction in the component device of the sensorless circuit. Therefore this is a advantage for the cost saving and size reduction. With indirect sensing methods based on detection of the terminal voltage that require active filtering, the position information needs the six divider section by PLL circuit, the binary counter and johnson counter by the EPLD. Finally, this algorithm can estimate the rotor position information similar to Hall-sensor sticked the three-phase BLDC motor. As a result, the method described that it is not sensitive to filtering delays, allowing the motor to achieve a good performance over a wide speed range. In addition, a simple starting method and a speed estimation approach are also proposed. Experimental and simulation results are included to verify the proposed scheme.

Speed Control of Three Phase Slotless PM BLDC Motor Using Single Sensor (Single Sensor를 이용한 3상 Slotless PM BLDC 전동기의 속도제어)

  • Lee S. J.;Yoon Y. H.;Woo M. S.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.33-37
    • /
    • 2004
  • Slotless Permanent magnet Brushless DC Motor(PM BLDC) with the characteristics of high speed and high power density has been more widely used in industrial and automatic machine. Generally, PM BLDC meter is necessary that the three Hall-ICs evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-ICs are set up in this motor to detect the main flux from the rotor. therefore the output signal from Hall-ICs is used to drive a power transistor to control the stator winding current. However, instead of using three Hall-ICs, if only we used one Hall-IC, we estimate information of the others phase in sequence through a revolving rotor. This paper identified the characteristics and performance by using one Hall-IC for the 3 phase PM BLDC whose six stator and two rotor designed.

  • PDF

Approaches to Suppressing Shaft Voltage in Non-Insulated Rotor Brushless DC Motor driven by PWM Inverter

  • Isomura, Yoshinori;Yamamoto, Kichiro;Morimoto, Shigeo;Maetani, Tatsuo;Watanabe, Akihiko;Nakano, Keisaku
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • The voltage source PWM inverter generally used to drive the air conditioning (A/C) fans has been posing a large issue that the bearings in air conditioning fan motors are highly possible to be corroded electrically. Potential difference called shaft voltage is generated between inner and outer rings of the bearings due to inverter switching. The shaft voltage causes bearing lubricant breakdown dielectrically. As a result, bearing current is caused. This current causes the bearing corrosion. In previous work, we demonstrated that the shaft voltage can be reduced by using an insulator inserted between the outer and inner cores of the rotor in an air conditioning fan motor without grounding. This paper proposes the other countermeasure for reducing the shaft voltage in fan motors. The countermeasure which adds a capacitor between the brackets and the stator core is effective even for fan motors with non-insulated rotor. The effectiveness is confirmed by both simulated and experimental results.

A Robust Sensorless speed control of Sensorless BLDC Motor (센서리스 BLDC 전동기의 강인한 속도 제어)

  • Kim, Jong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.266-275
    • /
    • 2008
  • The sensorless speed control technique for BLDC motor using digital IP control is proposed in this paper for advanced speed characteristic which is robust to motor parameters and load variations. The sensorless drive of BLDC motor using terminal voltages is affected by load or speed because it uses analog filters to estimate the rotor position. For this reason, the robust speed controller with the accurate rotor position estimator is needed for sensorless control which is robust to load and insensitive to motor parameters. The constant speed robust to load variation and the stable sensorless control of BLDC motor robust to the increase or decrease of speed with constant load is implemented using digital IP control in this paper. The validity to these is established with experimentation.

  • PDF