• Title/Summary/Keyword: DC Railway Power System

Search Result 128, Processing Time 0.023 seconds

Manufacture and operation of test facilities for energy regenerating system (회생제동 인버터 시험설비의 제작 및 시험)

  • Yang, Young-Chul;Park, Jong-Phil;Han, Moon-Sub;Kim, Ju-Rak;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.852-857
    • /
    • 2007
  • For electric traction using a large power converter, harmonic problem in the p-ower quality and regenerating energy in side of efficiency are important. Recently, by advance in power electronics technology, some countries are considering regenerative inverter from the points of view. when the electric tractions are stopped or driven through the falling slope way, it is very useful to supply surplus energy to the power source by regenerating system in the efficient side of energy and it is very economical. these regenerating energy are supported electrical equipment through DC line. In this research, the purposes are suppressing extra DC-line voltage and saving energy generated while electric traction is been driving on the falling slope way or reducing speed for railway using a 1500V DC-voltage. Besides, the accompanied defects of current distortion, low power factor and the voltage unbalance will be solved by developing the algorism of inverter having ability to compensate current harmonic.

  • PDF

Determining the Capacity and Installation Positions of Regenerative Inverters at DC 1500V Electric Railway Substations (직류 1500V 전기철도용 변전소의 회생인버터 용량 및 설치위치 선정 방법)

  • Bae, Chang-Han;Han, Moon-Seub;Kim, Yong-Ki;Kwon, Sam-Young;Park, Hyun-June
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.478-484
    • /
    • 2006
  • The paper presents methods of determining the capacity and installation positions of regenerative inverters installed in DC 1500V electric railway system. We suggested a method that approximates using parameters related to substations where regenerative inverters are installed, railway lines and operating motor cars, and another that calculates using regenerative power obtained from Train performance Simulation (TPS) and Power Flow Simulation (PFS). We carried out TPS and PFS for Seoul Subway Line $5{\sim}8$, calculating regenerative power and determining substations where regenerative inverters would be installed and the optimal capacity and number of inverters to be installed.

Development and Test of Inverter for Regenerative Power of DC Traction Power Supply System (직류급전시스템의 회생 전력 활용을 위한 인버터 시험설비 개발 및 성능시험)

  • Kim, Joo-Rak;Han, Moon-Seob;Kim, Yong-Ki;Kim, Jung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.254-259
    • /
    • 2009
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. Electric multiple (EMU) in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system and the replacement cycle of brake shoe in EMU will be increased and dust due to mechanical braking decreased. This paper present the developed inverter for regenerative power and its test equipment. Test for developed inverter is performed at test equipment and is divided into three items, which are regeneration mode, active filter mode, and system link test.

Power Demand Forecasting in the DC Urban Railway Substation (직류 도시철도 변전소 수요전력 예측)

  • Kim, Han-Su;Kwon, Oh-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1608-1614
    • /
    • 2014
  • Power demand forecasting is an important factor of the peak management. This paper deals with the 15 minutes ahead load forecasting problem in a DC urban railway system. Since supplied power lines to trains are connected with parallel, the load characteristics are too complex and highly non-linear. The main idea of the proposed method for the 15 minutes ahead prediction is to use the daily load similarity accounting for the load nonlinearity. An Euclidean norm with weighted factors including loads of the neighbor substation is used for the similar load selection. The prediction value is determinated by the sum of the similar load and the correction value. The correction has applied the neural network model. The feasibility of the proposed method is exemplified through some simulations applied to the actual load data of Incheon subway system.

The design of the traction power supply for the test line of Light Rail Vehicle (경전철 시험선용 전력공급시스템 설계)

  • 김국진;백병산;전용주;정상기;김남규
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.322-328
    • /
    • 2001
  • In the electric railway systems, it is very important that we should design the system configuration, location and power capacity of substation. This paper presents the results of system configuration and system design of the DC traction power supply for the test line of Light Rail Vehicle. The voltage fluctuation of train and the power capacity of substation are calculated by computer simulation using the nodal equation, K.C.L/K.V.L, Ohm's law and superposition theory.

  • PDF

A Fault Detection and Location Algorithm Using a Time Constant for DC Railway Systems (시정수를 이용한 직류철도급전계통에서의 고장판단 및 고장점표정 알고리즘)

  • 양언필;강상희;권영진
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.563-570
    • /
    • 2003
  • When a fault occurs on railway feeders it is very important to detect the fault to protect trains and facilities. Because a DC railway system has low feeder voltage, The fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the load starting current. The load starting current increases step by step but the fault current increases at one time. So the type of $\Delta$I/ relay(50F) was developed using the different characteristics between the load starting current and the fault current. The load starting current increases step by step so the time constant of each step is much smaller than that of the fault current. First, to detect faults in DC railway systems, an algorithm using the time constant calculated by the method of least squares is presented in this paper. If a fault occurs on DC railway systems it is necessary to find a fault location to repair the faulted system as soon as possible. The second aim of the paper is to calculate the accurate fault location using Kirchhoff's voltage law.

A Single-Phase PWM Converter with fast response (빠른 응답성을 갖는 단상 PWM Converter)

  • 배기훈;기상우;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.322-327
    • /
    • 1999
  • In most railway vehicle applications, a single phase AC/DC converter is used greatly and is essential equipment for Korea High Speed Train. A diode bridge rectifier and a phase-controlled thyristor bridge rectifier generate harmonics in power system. Nowadays, power factor and harmonics become major issue in electrical equipment for railway vehicle. Many researchers have been trying to improve the power factor and ac-side harmonics. Therefore the PWM converter is used to operate at unity Power factor and to reduce ac-side current harmonics. This paper describes the circuit for AC/DC PWM converter of Korea High Speed Train and proposes control algorithm to realize the sinusolidal input current waveform and the effective unity power factor. The validity of the proposed control method is verified through the experimental result.

  • PDF

Efficiency Improvement Effect Analysis for Marginal Storage Capacity in DC Electric Railway Systems (직류도시철도 시스템에서 저장장치 단위 용량 당 에너지 절감 효과 분석 연구)

  • Lee, Hansang;Yoon, Donghee;Kim, Hyungchul;Joo, Sung-Kwan;Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1159-1163
    • /
    • 2014
  • This paper have been dealt with the analysis for energy efficiency improvement effect of unity storage capacity as a part of the energy storage application study to improve energy efficiency in the electric railway systems. Especially, in order to estimate the amount of energy saving according to the variation of power capacity of each storage, the current limit module was mounted on an existing DC electric railway loadflow program which is based on the analysis model for railway system and storages, and combined optimization algorithm to determine optimal voltage boundary.

Modeling and Analysis of Three Phase PWM Converter (3상 PWM 컨버터의 모델링 및 해석)

  • 조국춘;박채운;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.328-335
    • /
    • 1999
  • Three phase full bridge rectifier has been used to obtain dc voltage from three phase ac voltage source. The rectifier system has drawbacks that power factor is low and power flow is unidirectional. Therefore, when dc voltage increases due to regeneration of power the dynamic resister for dissipation of regeneration power must be installed. But three phase PWM converter can be controlled to operate with unity power factor and bidirectional power flow. Therefore when the PWM converter is used as do supply system, the dissipating resistor is not necessary. On this thesis, in order to design a controller having good performance, the hee phase PWM converter is completely modeled by using circuit DQ-transformation and thus a general and simple instructive equivalent circuit is obtained; the inductor set becomes a second order gyrator-coupled system and three phase inverter becomes a transformer as well. Under given phase angle(${\alpha}$) and modulation index(MI) of the three phase inverter, the dc and ac characteristics are obtained by analysis of the transformed equivalent circuit The validity of the equivalent circuit is confirmed through PSPICE simulation. And based on the dc and ac characteristics a controller with unity power factor is proposed.

  • PDF

Integrated Protection Method for DC Railway Systems (통합형 직류철도 보호계전 방식)

  • Kang, Sang-Hee;Choi, Chang-Young;Lee, Won-Seok;Jung, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.285-292
    • /
    • 2011
  • DC traction power system is operated ungrounded so that minimize the stray current. Because the stray current is still present, a rail potential is increased. The ground faults in the DC railway systems are usually detected by a potential relay(64P). Moreover, if the rail potential goes high in the ordinary operating state because of the traction load, the potential relay would be maloperated. A presented protective relaying algorithm that can identify exactly the faulted region and can distinguish a ground fault from the potential rising of the rail is presented in this paper. This paper presents simulation technique that is very similar to the real operation situation using PSCAD/EMTDC.