• Title/Summary/Keyword: DC Excitation

Search Result 114, Processing Time 0.021 seconds

Study on the Reduction of Vibration, Acoustic Noise of SRM by DC Excitation Commutation Method (SRM의 직류여자 전류방식에 의한 진동, 소음의 저감 대책에 관한 연구)

  • Hwang, Yeong-Mun;Jeong, Tae-Uk;O, Seong-Gyu;Chu, Yeong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Switched reluctance motor(SRM) has simple magnetic structure, and requires simple power electronic driving circuit. It is very useful for wide range adjustable speed drive system. But, SRM drive generates large vibration and acoustic noise because it is commutated individually by step pulse m.m.f of each phase pole. In the vibration and acoustic noise characteristics. The considerable vibration and noise is induced by radial deforming of stator, so the frequency of dominant vibration and noise is coincident with the frequency of natural mode frequency of mechanical structure. This radial vibration force is generated in the phase commutation region. This paper suggests the new electromagnetic structure of SRM with auxiliary commutation winding which is excited by direct current. This phase and commutation winding are coupled magnetically between one phase winding and the other. Therefore, the switch-off phase current is absorbed by the another phase winding. By this interaction of phase and commutation winding in commutation mechanism, vibration and noise is reduced. And this reduction effect is examined by the test of prototype machine. As a result, SRM with DC exciting commutation winding is very useful to reduce vibration and acoustic noise.

  • PDF

Rotor Initial Position Estimation Based on sDFT for Electrically Excited Synchronous Motors

  • Yuan, Qing-Qing;Wu, Xiao-Jie;Dai, Peng
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.564-571
    • /
    • 2014
  • Rotor initial position is an important factor affecting the control performance of electrically excited synchronous motors. This study presents a novel method for estimating rotor initial position based on sliding discrete Fourier transform (sDFT). By injecting an ac excitation into the rotor winding, an induced voltage is generated in stator windings. Through this voltage, the stator flux can be obtained using a pure integral voltage model. Considering the influence from a dc bias and an integral initial value, we adopt the sDFT to extract the fundamental flux component. A quadrant identification model is designed to realize the accurate estimation of the rotor initial position. The sDFT and high-pass filter, DFT, are compared in detail, and the contrast between dc excitation and ac injection is determined. Simulation and experimental results verify that this type of novel method can eliminate the influence of dc bias and other adverse factors, as well as provide a basis for the control of motor drives.

A New High Efficiency and Low Pronto On-Board DC/DC Converter for Digital Car Audio Amplifier

  • Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.601-605
    • /
    • 2004
  • A new high efficiency and low profile on-board DC/DC converter for digital car audio amplifier is proposed. The proposed converter shows the continuous input current, no DC excitation current of the transformer, the minimized electro-magnetic interference (EMI), no output inductor, and the low voltage stress of the secondary rectifier diodes. The 60W industrial sample of the proposed converter is implemented for digital car audio amplifier and the measured efficiency is $88.3\%$ at nominal input voltage.

  • PDF

MEMS-BASED MICRO FLUXGATE SENSOR USING SOLENOID EXCITATION AND PICK-UP COILS (MEMS 공정 제작방법에 의한 솔레노이드형 여자 코일과 검출코일을 사용한 마이크로 플럭스게이트 센서)

  • 나경원;박해석;심동식;최원열;황준식;최상인
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.172-176
    • /
    • 2002
  • This paper describes a MEMS-based micro-fluxgate magnetic sensing element using Ni$\_$0.8/Fe$\_$0.2/ film formed by electroplating. The micro-fluxgate magnetic sensor composed of a thin film magnetic core and micro-structured solenoids for the pick-up and the excitation coils, is developed by using MEMS technologies in order to take advantage of low-cost, small size and lower power consumption in the fabrication. A copper with 20um width and 3um thickness is electroplated on Cr(300${\AA}$)/Au(1500${\AA}$) films for the pick-up(42turn) and the excitation(24turn) coils. In order to improve the sensitivity of the sensing element, we designed the magnetic core into a rectangular-ring shape to reduce the magnetic flux leakage. An electroplated permalloy film with the thickness of 3 $\mu\textrm{m}$ is obtained under 2000Gauss to induce magnetic anisotropy. The magnetic core has the high DC effective permeability of ∼1,100 and coercive field of -0.1Oe. The fabricated sensing element using rectangular-ring shaped magnetic film has the sensitivity of about 150V/T at the excitation frequency of 2MHz and the excitation voltage of 4.4Vp-p. The power consumption is estimated to be 50mW.

  • PDF

Development of Electronic Compass Using 2-Axis Micro Fluxgate Sensor (2축 마이크로 플럭스게이트 센서 제작을 통한 전자 나침반 개발)

  • 박해석;심동식;나경원;황준식;최상언
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.418-423
    • /
    • 2003
  • This paper describes an electronic compass using micromachined X- and Y-axis micro fluxgate sensors which were perpendicularly aligned each other to measure X- and Y-axis magnetic fields respectively. The fluxgate sensor was composed of rectangular-ring shaped magnetic core and solenoid excitation(49 turns) and pick-up(46 turns) coils. Excitation and pick-up coil patterns which were formed opposite to each other wound the magnetic core alternatively to improve the sensitivity and to excite the magnetic core in an optimal condition with reduced excitation current. The magnetic core has DC effective permeability of ~1000 and coercive field of ~0.1 Oe. The magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. To decrease the difference of induced second harmonic voltages from X- and Y-axis, excitation condition of 2.8 $V_{P-P}$ and 1.2 MHz square wave was selected. Excellent linear response over the range of -100 $\mu$T to +100 $\mu$T was obtained with 210 V/T sensitivity. The size of each micro fluxgate sensor excluding pad region was about 2.6${\times}$1.7 $mm^2$ and the power consumption was estimated to be 14 mW.W.

MEMS-based Micro Fluxgate Sensor Using Solenoid Excitation and Pick-up Coils (MEMS 공정 제작방법에 의한 솔레노이드형 여자 코일과 검출코일을 사용한 마이크로 플럭스게이트 센서)

  • 나경원;박해석;심동식;최원열;황준식;최상언
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.120-124
    • /
    • 2003
  • This paper describes a MEMS-based micro-fluxgate magnetic sensing element using Ni$\_$0.8/Fe$\_$0.2/ film formed by electroplating. The micro-fluxgate magnetic sensor composed of a thin film magnetic core and micro-structure solenoids for the pick-up and the excitation coils, is developed by using MEMS technologies in order to take advantage of low-cost, small size and lower power consumption in the fabrication. A copper with 20${\mu}$m width and 3${\mu}$m thickness is electroplated on Cr (300${\AA}$) / Au (1500${\AA}$) films for the pick-up (42turn) and the excitation (24turn) coils. In order to improve the sensitivity of the sensing element, we designed the magnetic core into a rectangular-ring shape to reduce the magnetic flux leakage. An electroplated permalloy film with the thickness of 3${\mu}$m is obtained under 2000 gauss to induce magnetic anisotropy. The magnetic core has the high DC effective permeability of ~1,100 and coercive field of ~0.1 Oe. The fabricated sensing element using rectangular-ring shaped magnetic film has the sensitivity of about 150 V/T at the excitation frequency of 2 MHz and the excitation voltage of 4.4 V$\_$p p/. The power consumption is estimated to be 50mW.

Nonlinear Dynamic Response of Cantilevered Carbon Nanotube Resonator by Electrostatic Excitation (정전기력 가진에 의한 외팔보형 탄소나노튜브 공진기의 비선형 동적 응답)

  • Kim, Il-Kwang;Lee, Soo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.813-819
    • /
    • 2011
  • This paper predicted nonlinear dynamic responses of a cantilevered carbon nanotube(CNT) resonator incorporating the electrostatic forces and van der Waals interactions between the CNT cantilever and ground plane. The structural model of CNT includes geometric and inertial nonlinearities to investigate various phenomena of nonlinear responses of the CNT due to the electrostatic excitation. In order to solve this problem, we used Galerkin's approximation and the numerical integration techniques. As a result, the CNT nano-resonator shows the softening effect through saddle-node bifurcation near primary resonance frequency with increasing the applied AC and DC voltages. Also we can predict nonlinear secondary resonances such as superharmonic and subharmonic resonances. The superharmonic resonance of the nano-resonator is influenced by applied AC voltage. The period-doubling bifurcation leads to the subharmonic resonance which occurs when the nano-resonator is actuated by electrostatic forces as parametric excitation.

2-Dimensional Fluxgate Sensor using Ferrite Ring Core (페라이트 링코어를 이용한 2차원 Fluxgate 센서)

  • 임재환;박한석;안영주;김남호;류지구
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.251-255
    • /
    • 2003
  • In this paper, we have a fluxgate sensor with ferrite core. Thought sensor is consist of one excitation coil and two pick-up coil, and A lock-in amplifier circuity is designed for Signal processing of picking up 2nd harmonics from pick-up coils. Excitation coils is turned by 20 turns, and pick-up coil for picking up harmonics is turned by 40 turns eachother. It convert 2nd harmonics to DC output voltage. Measured output voltage and sensitivity, direction of sensor about out side magnetic field, and also sensor output properties about excitation frequency and current.

  • PDF

Study of Thermal Ageing Behavior of the Accelerated Thermally Aged Chlorosulfonated Polyethylene for Thermosetting Analysis (열경화성 분석을 위한 가속열화 된 Chlorosulfonated Polyethylene의 경년특성 연구)

  • Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.800-805
    • /
    • 2017
  • The accelerated thermal ageing of CSPE (chlorosulfonated polyethylene) was carried out for 16.82, 50.45, and 84.09 days at $110^{\circ}C$, equivalent to 20, 60, and 100 years of ageing at $50^{\circ}C$ in nuclear power plants, respectively. As the accelerated thermally aged years increase, the insulation resistance and resistivity of the CSPE decrease, and the capacitance, relative permittivity and dissipation factor of those increase at the measured frequency, respectively. As the accelerated thermally aged years and the measured frequency increase, the phase degree of response voltage vs excitation voltage of the CSPE increase but the phase degree of response current vs excitation voltage decrease, respectively. As the accelerated thermally aged years increase, the apparent density, glass transition temperature and the melting temperature of the CSPE increase but the percent elongation and % crystallinity decrease, respectively. The differential temperatures of those are $0.013-0.037^{\circ}C$ and, $0.034-0.061^{\circ}C$ after the AC and DC voltages are applied to CSPE-0y and CSPE-20y, respectively; the differential temperatures of those are $0.011-0.038^{\circ}C$ and $0.002-0.028^{\circ}C$ after the AC and DC voltages are applied to CSPE-60y and CSPE-100y, respectively. The variations in temperature for the AC voltage are higher than those for the DC voltage when an AC voltage is applied to CSPE. It is found that the dielectric loss owing to the dissipation factor($tan{\delta}$) is related to the electric dipole conduction current. It is ascertained that the ionic (electron or hole) leakage current is increased by the partial separation of the branch chain of CSPE polymer as a result of thermal stress due to accelerated thermal ageing.

A MICRO FLUXGATE SENSOR IN PRINTED CIRCUIT BOARD (PCB) (인쇄회로 기판에 내장된 마이크로 플럭스게이트 센서)

  • 최원열;황준식;나경원;강명삼;최상언
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.151-155
    • /
    • 2002
  • This paper presents a micro fluxgate magnetic sensor in printed circuit board (PCB). The fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a micro patterned amorphous magnetic ribbon with extremely high DC permeability of ∼100,000 and the core has a rectangular-ring shape. The amorphous magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. Four outer layers as an excitation and pick-up coils have a planar solenoid structure. The chip size of the fabricated sensing element is 7.3${\times}$5.7m㎡. Excellent linear response over the range of -100${\mu}$T to +100${\mu}$T is obtained with 540V/T sensitivity at excitation square wave of 3V$\_$P-P/ and 360kHz. The very low power consumption of ∼8mW was measured. This magnetic sensing element which measures the lower fields than 50${\mu}$T, is very useful for various applications such as: portable navigation systems, military research, medical research, and space research.

  • PDF