• Title/Summary/Keyword: DC Arc

Search Result 220, Processing Time 0.028 seconds

Analysis of Serial Arc with DC Current (DC 전류에 의한 직렬 아크 특성 분석)

  • Ban, Gi-Jong;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1700-1701
    • /
    • 2007
  • DC Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this paper, DC arc detection device is designed for the display of DC arc fault current which is occurred in the local electric network with DC Power. This DC arc is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and low frequency. DC Arc current detection device is designed for the display of arc fault current which has the modified arc characteristics.

  • PDF

A Study of DC Arc Detection Device (DC Arc 검출장치에 대한 연구)

  • Ban, Gi-Jong;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.98-100
    • /
    • 2007
  • DC Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this paper, DC arc detection device is designed for the display of DC arc fault current which is occurred in the local electric network with DC Power. This DC arc is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and low frequency. DC Arc current detection device is designed for the display of arc fault current which has the modified arc characteristics.

  • PDF

Operating Characteristics of Arc-induction Type DC Circuit Breaker (아크유도형 DC 차단기의 동작 특성)

  • Park, Sang-Yong;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.981-986
    • /
    • 2018
  • AC(alternating current) CB(circuit breaker) at the fault occurred in the existing AC distribution system is limiting the fault current through zero cross-point. However, DC(direct current) CB does not have zero cross-point. Therefore, arc occurred by on-off operation of DC CB is very huge. Nowadays, many research team are studying the way to decrease breaking time, which is one of the essential conditions in DC CB. We suggested novel arc-induction type DC CB in this paper. The proposed arc-induction type DC CB is composed of the mechanical Arc ring and DC CB. We confirmed the operation of arc-induction type DC CB through the HFSS(High Frequency Structure Simulator) 3D simulation program and performed the experiment for operation characteristics. Results showed that arcing time of the arc-induction type DC CB by using induction ring was faster than existing mechanical DC CB. On the transient system, we confirmed stable operation characteristics of the arc-induction type DC CB through the simulation and experimental results. We expect that the proposed arc-induction type DC CB technology is will go to stay ahead of the existing DC CB technology.

A Study of Arc Detection at DC Power System (직류 시스템에서의 아크 검출에 관한 연구)

  • Ban, Gi-Jong;Kim, Jin-Woo;Won, Young-Jin;Lim, Sung-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.461-462
    • /
    • 2007
  • DC Arc is an electric discharge which is occurred in two oppolsite electrode when system operating with DC current appliance. In this paper, DC arc detection system is designed for the display of DC arc fault current which is occurred in the local electric network with DC Power. This DC arc is one of the main causes of electric fire of dc system. Arc fault in electrical network has the characteristics of low current, high impedance and low frequency. DC Arc current detection device is designed for the display of arc fault current which has the modified arc characteristics.

  • PDF

Thyristor Rectifier for DC Arc Furnace with Enhanced Arc Stability

  • Jung, Kyungsub;Suh, Yongsug;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.498-499
    • /
    • 2011
  • In this paper, the fundamental features of the arc stability DC arc furnace have been investigated, from the converter point of view. To compare of measurement arc data from DC arc furnace and the advanced arc simulations of magneto-hydrodynamics (MHD) and the well known Cassie-Mayr arc model have been extensively used. The MHD based arc simulation has been validated in the subcomponent level, for the free burning arc set up in the laboratory. The arc simulation predicted the arc voltage for different currents with the accuracy which satisfies engineering requirements. It has been shown that the arc current steepness at current zero determines the arc stability, and the associated peak arc resistance can be used as its quantitative measure. Based on the presented insight into the DC arc stability, a converter topology solution which realizes an optimal arc stability has been proposed. The main results presented in this paper provide a design guideline for the future DC arc furnace converter topology developments.

  • PDF

Control Strategy of Smoothing Arc for DC Arc Furnace

  • Jung, Kyungsub;Suh, Yongsug;Lee, Yongjoong;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.354-355
    • /
    • 2013
  • Fundamental features of the arc stability in DC arc furnace of 720V/100kA/72MW have been investigated. Cassie-Mayr arc model has been employed and applied for the target dc arc furnace. In order to characterize the parameters of Cassie-Mayr arc model and the behavior of unstable arc dynamics, the advanced arc simulations of magneto-hydrodynamics (MHD) has been performed. The MHD based arc simulation has been validated in the subcomponent level, for the free burning arc set up in the laboratory. From the results of MHD simulation, dc arc dynamic resistance is proposed to be an effective arc stability function reflecting the instability of dynamic arc behavior. The experimental result confirms the usefulness of proposed dynamic arc resistance as arc stability function. The proposed arc stability function can be regarded as an effective criterion for the overall power conversion system to maintain highly stable arcing operation leading to better productivity and reliability.

  • PDF

Experiment on DC Circuit Breaker for Inductive Load by Improved Magnetic Arc-extinguisher and Arc-Attenuation Circuit (개선된 자기소호회로와 아크전압 억제회로를 사용한 유도성 부하의 직류차단 특성 실험)

  • Lee, Sung-Min;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.495-499
    • /
    • 2012
  • Recently, DC distribution systems become hot issues since DC type loads increase rapidly according to the expansion of IT equipment such as computers, servers, and digital devices; DC type loads will cover 50% for all electricity loads in 2020 which was mere 10% in 2000. DC distribution systems are also accelerated by the expansion of renewable power systems since they are easy to be interfaced with DC grids rather than AC grids. However, removing the fault current in DC grids is comparably difficult since the current in DC grids has non zero-crossing point like in AC grids. Thus, developing dedicated DC circuit breakers for DC grids is necessary to get safety for human and electrical facilities. Magnet arc extinguishing method is proper to small size DC circuit breakers. However, simple Magnet arc extinguishing method is not enough to break inductive fault currents. This paper proposed a novel DC circuit breaker against inductive fault current defined by IEEE C37.14-2004 Standard for Low-Voltage DC Power Circuit Breakers Used in Enclosures. The performance of the proposed DC circuit breaker was verified by an experimental circuit breaker test system built in this research.

Control Algorithm of Thyristor Rectifier to Improve Arc Stability in DC Arc Furnace

  • Jung, Kyungsub;Suh, Yongsug;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.371-372
    • /
    • 2012
  • In this paper fundamental features of the arc stability in DC arc furnace of 720V/100kA/72MW have been investigated. Cassie-Mayr arc model has been employed for the target dc arc furnace. In order to characterize the parameters of Cassie-Mayr arc model and the behavior of unstable arc dynamics, the advanced arc simulations of magneto-hydrodynamics (MHD) has been performed. Based on the results of MHD simulation, dc arc dynamic resistance is proposed to be an effective arc stability function reflecting the instability of dynamic arc behavior. The experimental result confirms the usefulness of proposed dynamic arc resistance as arc stability function. The proposed arc stability function can be regarded as an effective criterion for the overall power conversion system to maintain highly stable arcing operation leading to better productivity and reliability.

  • PDF

Arc Detection Performance and Processing Speed Improvement of Discrete Wavelet Transform Algorithm for Photovoltaic Series Arc Fault Detector (태양광 직렬 아크 검출기의 검출 성능 및 DWT 알고리즘 연산 속도 개선)

  • Cho, Chan-Gi;Ahn, Jae-Beom;Lee, Jin-Han;Lee, Ki-Duk;Lee, Jin;Ryoo, Hong-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.32-37
    • /
    • 2021
  • This study proposes a DC series arc fault detector using a frequency analysis method called the discrete wavelet transform (DWT), in which the processing speed of the DWT algorithm is improved effectively. The processing time can be shortened because of the time characteristic of the DWT result. The performance of the developed DC series arc fault detector for a large photovoltaic system is verified with various DC series arc generation conditions. Successful DC series arc detection and improved calculation time were both demonstrated through the measured actual arc experimental result.

DC Arc Characteristics Analysis according to U1699B Test Standardof the Status (태양광발전설비 DC 아크특성 분석)

  • Wan-Su Kim;Kwang-Muk Park
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.118-123
    • /
    • 2023
  • The main cause of solar facility fires is arc, and in the last 3 years ('16 to '18), about 80% of domestic solar facility fires have been caused by arcs. The capacity of solar power facilities installed around the world continues to increase, and fires caused by arcs are also expected to increase as the solar power generation facilities that were initially installed become obsolete, In this paper, an arc generation test was conducted based on the UL1699B test standard. As a result of the test, the arc generation satisfied the minimum arc current according to the test conditions, and DC arc characteristics were analyzed through data such as arc voltage and arc current according to variables such as speed of moving electrodes and electrode spacing.