• 제목/요약/키워드: DC/DC Power converter

검색결과 2,924건 처리시간 0.028초

Reduction of DC-Link Capacitance in Single-Phase Non-Isolated Onboard Battery Chargers

  • Nguyen, Hoang Vu;Lee, Sangmin;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.394-402
    • /
    • 2019
  • This paper proposes a single-phase non-isolated onboard battery charger (OBC) for electric vehicles (EVs) that only uses small film capacitors at the DC-link of the AC-DC converter. In the proposed charger, an isolated DC-DC converter for low-voltage batteries is used as an active power decoupling (APD) circuit to absorb the ripple power when a high-voltage (HV) battery is charged. As a result, the DC-link capacitance in the AC-DC converter of the HV charging circuit can be significantly reduced without requiring any additional devices. In addition, some of the components of the proposed circuit are shared in common for the different operating modes among the AC-DC converter, LV charging circuit and active power filter. Therefore, the cost and volume of the onboard battery charger can be reduced. The effectiveness of the proposed topology has been verified by the simulation and experimental results.

7kW 연료전지용 DC/DC 컨버터 설계 (DC/DC Converter Design for 7kW Fuel Cell)

  • 김가인;신민호;이정효
    • 전력전자학회논문지
    • /
    • 제27권2호
    • /
    • pp.150-156
    • /
    • 2022
  • This study proposes a design method of fuel cell DC/DC converter using in 5-ton forklift. For efficient hydrogen usage, targeted fuel cell system recirculates discarded hydrogen after fuel cell reaction. Recirculating hydrogen contains much impurities that reduces output power, increasing pressure that can damage the internal fuel cell reaction system. The proposed DC/DC converter effectively converts fuel cell power considering the voltage drop rate to reflect the recirculating hydrogen. Then, frequency control method is used to regulate the current ripple amount for battery and fuel cell hybrid configuration. Proposed power converter system design and control methods are verified in a practical fuel cell system that implements recirculating hydrogen.

광전지 패널과 DC-DC 컨버터 출력의 직렬 접속을 이용한 고효율 PV 시스템 (A high efficient PV system using series connection of DC-DC converter's output with photovoltaic panel)

  • 김호성;김종현;민병덕;유동욱;홍지태;이동길;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1146-1147
    • /
    • 2008
  • PV Power Conditioning System (PCS) must have high conversion and low cost. Generally, PV PCS uses either a single converter or multilevel module integrated converter (MIC). Each of these approaches has both advantage and disadvantage. For a high conversion efficiency and low cost of PV module, this paper proposes series connection of module integrated DC-DC converter's output with PV panel. Output voltage of PV panel is connected to the output capacitor of flyback converter. Thus, converter's output voltage is added to the output voltage of PV panel. Isolated DC-DC converter generates only the difference voltage between the PV panel voltage and the required total output voltage. This method reduces power level of DC-DC converter and enhances the energy conversion efficiency compared with conventional DC-DC converter.

  • PDF

비접촉 전원장치에 적용한 LCC형 고주파 공진 DC/DC 컨버터에 관한 연구 (A Study on the LCC Type High Frequency DC/DC Converter for Contactless Power Supply System)

  • 김동희;황계호
    • 조명전기설비학회논문지
    • /
    • 제21권6호
    • /
    • pp.55-64
    • /
    • 2007
  • 본 논문은 부하직렬 고주파 공진 DC/DC 컨버터에 가변 가능한 공진커패시터를 병렬로 삽입한 LCC형 고주파 공진 DC/DC 컨버터의 특성과 설계 예를 나타내고 있으며, 또한 턴-오프시 스위칭 손실을 줄이기 위해 ZVS를 가지는 소프트 스위칭을 사용하였다. 제안 컨버터는 PFM(Pulse Frequency Modulation) 스위칭 패턴을 사용하여 동작되며, PFM 제어에 의해 제안 회로의 출력전압을 제어하였다. 병렬커패시터의 커패시턴스의 변화에 따라, DC/DC 컨버터의 분석은 일반적으로 무차원화 파라미터를 사용하여 나타내었고, 회로 동작 특성은 스위칭 주파수와 파라미터로 행하였다. 또한 본 논문은 특성평가에 의해 제안 DC/DC 컨버터의 동작 특성과 회로 설계 방법을 제시하였다. 더욱이 본 논문은 실험을 통해 이론 분석의 정당성을 입증하였다. 향후 제안한 DC/DC 컨버터는 반도체 및 FPD의 클린룸에 선형이동 시스템의 비접촉 전원장치에 적용 가능하다고 생각된다.

Coupled Inductor-Based Parallel Operation of a qZ-Source Full-Bridge DC-DC Converter

  • Lee, Hyeongmin;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2015
  • This study presents a novel transformer isolated parallel connected quasi Z-source (qZ-source) full-bridge DC-DC converter that uses a coupled inductor in both the qZ-source network and output filter inductor. Unlike traditional voltage-fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost functions can be achieved and converter reliability can be significantly improved. All the bulky inductors in the qZ-source network and output filter can also be minimized with the proposed inductor structures. A 4 kW prototype DC-DC converter is built and tested to verify the performance of the proposed converter.

컨버터와 DC 마이크로그리드 사고 상황의 상호작용을 검증하기 위한 실시간 전력 시뮬레이션 테스트 베드 (Power Hardware-in-the-Loop (PHIL) Simulation Testbed for Testing Electrical Interactions Between Power Converter and Fault Conditions of DC Microgrid)

  • 허경욱;정지훈
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.150-157
    • /
    • 2021
  • Nowadays, a DC microgrid that can link various distributed power sources is gaining much attention. Accordingly, research on fault situations, such as line-to-line and line-to-ground faults of the DC microgrid, has been conducted to improve grid reliability. However, the blackout of an AC system and the oscillation of a DC bus voltage have not been reported or have not been sufficiently verified by previous research. In this study, a 20 kW DC microgrid testbed using a power HIL simulation technique is proposed. This testbed can simulate various fault conditions without any additional grid facilities and dangerous experiments. It includes the blackout of the DC microgrid caused by the AC utility grid's blackout, a drastic load increment, and the DC bus voltage oscillation caused by the LCL filter of the voltage source converter. The effectiveness of the proposed testbed is verified by using Opal-RT's OP5707 real-time simulator with a 3 kW prototype three-port dual-active-bridge converter.

A New High Efficiency ZVZCS Bidirectional DC/DC Converter for HEV 42V Power Systems

  • Kim Chong-Eun;Han Sang-Kyoo;Park Ki-Bum;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • 제6권3호
    • /
    • pp.271-278
    • /
    • 2006
  • A new high efficiency zero-voltage and zero-current switching (ZVZCS) bidirectional DC/DC converter is proposed in this paper. The proposed converter consists of two symmetric half-bridge cells as the input and output stages. MOSFETs of input stage are turned-on in ZVS condition, and those of output stage are turned-off in ZCS condition. In addition, MOSFETs of input and output stages have low voltage stresses clamped to input and output voltage, respectively. Therefore, the proposed converter has high efficiency and high power density. The operational principles are analyzed and the advantages of the proposed converter are described. The 300W prototype of the proposed converter is implemented for 42V hybrid electric vehicle (HEV) application in order to verify the operational principles and advantages.

새로운 멀티 모드 DC-DC 컨버터를 이용한 하이브리드 전기자동차용 전력변환 시스템 (Energy Conversion System using a Novel Multi-Mode DC/DC Converter for Hybrid Electric Vehicles)

  • 박태식
    • 전력전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.192-198
    • /
    • 2013
  • The rapidly growing demand for electric power systems in electric vehicles (EVs) and hybrid electric vehicles (HEVs) require simpler, cost-effective, and higher performance components. In this paper, a novel power conversion system for hybrid electric vehicles is proposed for these needs. The proposed power conversion system reduces the conversion system cost while preserving same functionality. The proposed power conversion system can boost multi-sources to drive a traction motor and to store energy at the same time reducing number of switching components. In this paper, all operational modes of the proposed converter are explained in detail and verified by a computer simulation first. Then, the topology and operational modes are experimentally verified. Based on the results, the feasibility of the proposed multi-mode single leg power conversion system for EV and HEV applications is discussed.

Quasi-Notch Filter를 이용한 DC-DC-AC 계통연계형 단상 인버터에서의 저주파 전류 감소 기법 (Low Frequency Current Reduction using a Quasi-Notch Filter operated in Two-Stage DC-DC-AC Grid-Connected Systems)

  • 정홍주;김래영
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.276-282
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a dc-dc converter and a dc-ac converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains double-fundamental frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new double-fundamental current reduction-scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small-signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.

Analysis, Design and Development of a Single Switch Flyback Buck-Boost AC-DC Converter for Low Power Battery Charging Applications

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Power Electronics
    • /
    • 제7권4호
    • /
    • pp.318-327
    • /
    • 2007
  • The design and performance analysis of a power factor corrected (PFC), single-phase, single switch flyback buck-boost ac-dc converter is carried out for low power battery charging applications. The proposed configuration of the flyback buck-boost ac-dc converter consists of only one switch and operates in discontinuous current mode (DCM), resulting in simplicity in design and manufacturing and reduction in input current total harmonic distortion (THD). The design procedure of the flyback buck-boost ac-dc converter is presented for the battery charging application. To verify and investigate the design and performance, a simulation study of the flyback buck-boost converter in DCM is performed using the PSIM6.0 platform. A laboratory prototype of the proposed single switch flyback buck-boost ac-dc converter is developed and test results are presented to validate the design and developed model of the system.