• Title/Summary/Keyword: DBPs

Search Result 95, Processing Time 0.026 seconds

Occurrence of Disinfection By-Products and Distribution in Drinking Water

  • In, Chi-Kyung;Lee, Jung-Ho;Lee, In-Sook
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.103-114
    • /
    • 2005
  • Chlorine disinfection has been used in drinking water supply to disinfect the water-borne microbial disease which may cause to serious human disease. As Chlorination is still the least costly, relatively easy to use, chlorination is the primary means to disinfect portable water supplies and control bacterial growth in the distribution system. However, chlorine also reacts with natural organic matter (NOM), which presents in nearly all water sources, and then produces disinfection by-product (DBps), which may have adverse health effects. Although the existent DBPs have been reported in drinking water supplies, it is not feasible to predict the levels of the various DBPs due to the complex chemistry reaction involved. The objectives of this study were to investigate seasonal variation of DBPs formation and difference of DBPs concentration in the plant to tap water. The average concentration of THMs was 20.04 ${\mu}g/{\ell}$, HAAs 8-15 ${\mu}g/{\ell}$, HANs 2-4.5 ${\mu}g/{\ell}$ respectively. Distant variation of DBPs formation is that THMs concentration increase by 17% at 2 km point from the plant and by 28% at 7 km and HAAs, HANs also increase each by 16%, 32%, at 2 km from the plant and 35%, 56%, at 7 km. DBPs increase in water supply pipe continually. The seasonal occurrence of DBPs is that in May and August DBPs concentration is very high then in March, in May DBPs concentration is highest. The temperature is main factor of DBPs formation, precursor also. Precursor which was accumulated for winter flowed into the raw water by flooding in spring and summer and produced DBPs. Therefore for the supply of secure drinking water, it is required to protect precursor of flowing into raw water and to add to BCAA and DBAA to drinking water standards.

  • PDF

Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review

  • Korshin, Gregory;Yan, Mingquan
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.345-353
    • /
    • 2018
  • This paper summarizes results of research on the electrochemical (EC) degradation of disinfection by-products (DBPs) and iodine-containing contrast media (ICMs), with the focus on EC reductive dehalogenation. The efficiency of EC dehalogenation of DBPs increases with the number of halogen atoms in an individual DBP species. EC reductive cleavage of bromine from parent DBPs is faster than that of chlorine. EC data and quantum chemical modeling indicate that the EC reduction of iodine-containing DBPs (I-DBPs) is characterized by the formation of active iodine that reacts with the organic substrate. The occurrence of ICMs has attracted attention due to their association with the generation of I-DBPs. Indirect EC oxidation of ICMs using anodes that produce reactive oxygen species can result in a complete degradation of these compounds yet I-DBPs are formed in the process. Reductive EC deiodination of ICMs is rapid and its overall rate is diffusion-controlled yet I-DBPs are also produced in this reaction. Further progress in practically feasible EC methods to remove DBPs, ICMs and other trace-level organic contaminants requires the development of novel electrocatalytic materials, elimination of mass transfer limitations via innovative design of 3D electrodes and EC reactors, and further progress in the understanding of intrinsic mechanisms of EC reactions of DBPs and TrOC at EC interfaces.

DBPs Variation by Chlorination and Preozonation in Drinking Water (염소 및 오존소독시 정수처리공정별 소독부산물 발생 변화)

  • Kim, Junsung;Choi, Yongwook;Chung, Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.676-681
    • /
    • 2005
  • This study was researched for disinfection by-products (DBPs) by preozonation, prechlorination and/or postchlorination. DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), halonitriles, and aldehydes were analyzed by the treatment steps of prechlorination, preozonation, sedimentation, filtration, and postchlorination comparatively. THMs were detected as $52.20{\mu}g/L$ after prechlorination and decreased during sedimentation and filtration process. The HAAs and aldehydes increased more during preozonaiton than prechlorination. However, chlorinated DBPs and aldehydes increased more by postchlorination. Chlorinated DBPs formed by preozonation increased 26% more than the chlorination process. If aldehydes were included in the total DBPs, DBPs increased up to 39% by preozonation. Preozonation could increase the removal efficiency of organic carbon during the coagulation and sedimentation processes. Ozonation might produce aldehydes that are not permitted for drinking water regulations. Also, DBPs were produced by preozonation than by chlorination. These results would bring a need for alternative disinfection studies to decrease DBPs.

Variations of Disinfection By-products in a Chlorinated Drinking Water Distribution System

  • Lee, Soo-Hyung;Park, Jeong-Kun;Lee, Hyung-Jun;Kim, He-Kap
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • The chlorination of municipal drinking water supplies leads to the formation of so-called disinfection by-products(DBPs), many of which have been reported to cause harmful health effects based on animal studies. This study was conducted: 1) to observe seasonal changes in the major DBPs at four sampling sites on a drinking water distribution system located in Chunchon, Kangwon Do; and 2) to examine the effects of major water quality parameters on the formation of DBPs. During the field sampling, the water temperature, pH, and total and free chlorine residuals were all measured. The water samples were then analyzed for total organic carbon(TOC) and eight disinfection by-products in the laboratory. Chloroform, dichloroacetic acid, and trichloroacetic acid were the major constituents of the measured DBPs. The concentrations of the total DBPs were highest in fall, particularly in October, and lowest in summer. The concentrations of the total DBPs increased with increasing TOC concentrations. Multiple regression analyses showed that the concentrations of chloroform, bromodichloromethane, and chloral hydrate were linearly correlated with the pH. Other water parameters were not included in the regression equations. Accordingly, these results suggest that TOC and pH are both important factors in the formation of DBPs.

  • PDF

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

Occurrence and Distribution of Disinfection of By-Products in Drinking Water (수돗물중 소독부산물(DBPs)의 생성 및 분포특성에 관한 연구)

  • In, C.K.;Lee, J.H.;Lee, I.S.;Bang, E.O.;Song, H.S.;Yoon, S.J.
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.263-272
    • /
    • 2005
  • Chlorine disinfection has been used in drinking water supply to disinfect the water-borne microbial disease which may cause to serious human disease. it is still the least costly, relatively easy to use, Chlorination is the primary means to disinfect portable water supplies and control bacterial growth in the distribution system. However, chlorine reacts with natural organic matter(NOM), that presents in nearly all water sources, and then produces disinfection by-products(DBPs), that have adverse health effects. Although the existent DBPs have been reported in drinking water supplies, it is not feasible to predict the levels of the various DBPs due to the complex chemistry reaction involved. 1. The objectives of this study is to investigate seasonal variation difference concentration of DBPs in the plant to tap water. The average concentration of THMs was 20.04 ${\mu}g/{\ell}$ , HAAs 8-15 ${\mu}g/{\ell}$ , HANs 2-4.5 ${\mu}g/{\ell}$ respectively. 2. Distant variation of DBPs furmation by the distance is that THMs concentration increased by 17% at 2km point from the plant and by 28% at 7km and HAAs, HANs also increase each by 16%, 32% at 2 km from the plant and 35%, 56% at 7 km. DBPs increase in water supply pipe continually, 3. The seasonal occurrence of BBPs is that in May and August DBPs concentration is very higher than in march, in May DBPs concentration is highest. The temperature is main factor of DBPs formation, precursor also. 4. Precursor which was accumulated for winter flowed into the raw water by flooding in spring and summer and produced DBPs. 5. Therefore for the supply of secure drinking water, it is required to protect precursor of flowing into raw water and to add to BCAA and DBAA to drinking water standards.

  • PDF

The Effect of Physical Chemistry Factors on Formation of Disinfection by-products (소독부산물 생성에 미치는 물리화학적인 인자 영향)

  • Chung Yong;Kim Jun-Sung
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.965-972
    • /
    • 2005
  • This research studied the effect of factors that are able to form disinfection by-products (DBPs) of chlorination, including natural organic matter (NOM) with sewage, bromide ions, pH and contact time. Trihalomethane (THMs) yield of $0.95{\mu}mol/mg$ was higher than other DBPs yield for the chlorinated humic acid samples. THMs yield of sewage sample was $0.14{\mu}mol/mg$ and haloacetonitriles (HANs) yield in the sewage samples were $0.13{\mu}mol/mg$ but only $0.02{\mu}mol/mg$ for the humic acid samples. As the concentration of bromide ions increased, brominated DBPs increased while chlorinated DBPs decreased, because bromide ions produce brominated DBPs. THMs were highest $(55.55{\mu}g/L)$ at a pH of 7.9 and haloacetic acids (HAAs) were highest $(34.98{\mu}g/L)$ at a pH of 5. Also THMs increased with increasing pH while HAAs decreased with increasing pH. After chlorination, the rate of THMs and HAA formation are faster at initial contact time and then reaches a nearly constant value after 24 hours. This study considers ways to reduce DBP formation by chlorination.

Characteristics of Disinfection By-Products Formation in Korea (국내 정수장의 소독부산물 생성 특성)

  • Kim, Jinkeun;Jeong, Sanggi;Shin, Changsoo;Cho, Hyukjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.301-311
    • /
    • 2005
  • The characteristics of disinfection by-products (DBPs) formation at 28 water treatment plants in Korea were investigated. Investigated species of DBPs were trihalomethanes (THMs), haloacetic acids (HAAs) and chloral hydrate (CH). The maximum concentration of THMs was $84.1{\mu}g/L$, minimum and the averages were $6.9{\mu}g/L$ and $27.8{\mu}g/L$, respectively; the maximum concentration of $HAA_5$ was $90.8{\mu}g/L$, minimum and the averages were $3.8{\mu}g/L$ and $26.7{\mu}g/L$, respectively; while the maximum concentration of CH was $29.5{\mu}g/L$, minimum and the averages were $0.5{\mu}g/L$ and $7.4{\mu}g/L$, respectively. On the other hand, DBPs levels during summer months, when the water temperature was near $25^{\circ}C$, were nearly twice as great as DBPs levels during the winter season. The ratio of $THMs/HAA_5$ was 1.07, and $HAA_5$ and THMs were the dominant species of DBPS in the Kum-Sumjin river and Nakdong river, respectivley.

Formation Characteristics and Control of Disinfection Byproducts in a Drinking Water Treatment Plant Using Lake Water (호소수를 원수로 사용하는 정수장의 소독부산물 생성 특성 및 제어 방안)

  • Lee, Kichang;Gegal, Bongchang;Choi, Ilhwan;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.269-276
    • /
    • 2015
  • This study investigated the influence of characteristics of natural organic matter (NOM) on the formation of disinfection by-products (DBPs), and proposed the control strategies of DBPs formation in a drinking water treatment plant using lake water in Gyeongsangbuk-do. The fluorescence excitation-emission matrix analysis results revealed that the origins of NOM in raw waters to the plant were a mixture of terrestrial and microbial sources. Molecular size distributions and removals of NOM fractions were evaluated with a liquid chromatography-organic carbon detector (LC-OCD) analysis. Humic substances and low molecular weight organics were dominant fractions of NOM in the raw water. High molecular weight organics were relatively easier to remove through coagulation/precipitation than low molecular weight organics. The concentrations of DBPs formed by pre-chlorination increased through the treatment processes in regular sequence due to longer reaction time. Chloroform (74%) accounts for the largest part of trihalomethanes, followed by bromodichloromethane (22%) and dibromochloromethane (4%). Dichloroacetic acid (50%) and trichloroacetic acid (48%) were dominant species of haloacetic acids, and brominated species such as dibromoacetic acid (2%) were minimal or none. Dichloroacetonitrile (60%) accounts for the largest part of haloacetonitriles, followed by bromochloroacetonitrile (30%) and dibromoacetonitrile (10%). The formation of DBPs were reduced by 16~44% as dosages of pre-chlorine decreased. Dosages of pre-chlorine was more contributing to DBPs formation than variations of dissolved organic contents or water temperature.

Characterization of NOM Behavior and DBPs Formation in Water Treatment Processes (정수처리공정에서 NOM 거동과 소독부산물 발생특성)

  • Kim, Sang Eun;Gu, Yeun Hee;Yu, Myong Jin;Chang, Hyun Seong;Lee, Su Won;Han, Sun Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.395-407
    • /
    • 2007
  • Disinfection by-products(DBPs) are formed through the reaction between chlorine and natural organic matter(NOM) in water treatment. For reducing the formation of chlorinated DBPs in the drinking water treatment, there is a need to evaluate the behavior of NOM fractions and the occurrence of DBPs for each fraction. Among the six fractions of NOM, the removal of HPOA and HPIN got accomplished through coagulation and sedimentation processes. Advanced water treatment processes were found to be most significant to remove the HPOA and HPON. It was found that HPOA made the most THMFP level than any other fractions and HPIA and HPOA formed higher HAAFP. The fraction of NOM with MW less than 1k Da was 32.5~54.3% in intake raw water. Mostly the organic matter with MW more than 1k Da was removed through coagulation and sedimentation in the drinking water treatment processes. In case of advanced water treatment processes, the organic matter with MW 1k~100k Da decreased by means of ozone oxidation for high molecular weight substances. As the result low molecular organic matter increased. In the BAC and GAC processes, the organic matter with MW less than 100k Da decreased.