• Title/Summary/Keyword: DBD (Dielectric Barrier Discharge)

Search Result 169, Processing Time 0.026 seconds

Effect of Plasma Area on Frequency of Monostatic Radar Cross Section Reduction

  • Ha, Jungje;Shin, Woongjae;Lee, Joo Hwan;Kim, Yuna;Kim, Doosoo;Lee, Yongshik;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.153-158
    • /
    • 2017
  • This work reports on the effect of plasma area on the frequency characteristics of the monostatic radar cross section (RCS) of a square metallic plate. A dielectric barrier discharge (DBD) plasma actuator consisting of 10 rings is proposed. The actuator is fabricated in three different configurations such that only three inner rings, seven inner rings, and all rings can be biased. By applying an 18-kV bias at 1 kHz, the three types of DBD actuators generate plasma with a total area of 16.96, 36.74, and $53.69cm^2$, respectively, in a ring or circular form. The experimental results reveal that when the DBD actuator is placed in front of a $20mm{\times}20cm$ conducting plate, the monostatic RCS is reduced by as much as 18.5 dB in the range of 9.41-11.65 GHz. Furthermore, by generating the plasma and changing the area, the frequency of maximum reduction in the monostatic RCS of the plate can be controlled. The frequency is reduced by nearly 20% in the X band when all rings are biased. Finally, an electromagnetic model of the plasma is obtained by comparing the experimental and full-wave simulated results.

The Effect of $O_3$ Direct Injection on NO Conversion and Byproduct Formation (오존의 직접 분사가 NO 전환 및 부산물 생성에 미치는 영향)

  • 이용환;고경보;최유리;길영미;정재우;조무현;남궁원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.143-144
    • /
    • 2003
  • 최근 들어 플라즈마 촉매 복합공정을 이용하여 NOx를 제거시키기 위한 연구가 활발히 이루어지고 있다. 저온 플라즈마 공정중 하나인 DBD (Dielectric barrier discharge) 공정 내에서 NO는 NO$_2$로 매우 효과적으로 전환된다. 촉매공정의 경우 NO보다 NO$_2$가 주입되는 경우 NOx 제거 효율이 높고 촉매의 피독 현상도 줄어들게 된다. 따라서 DBD를 이용하여 NO의 전환율을 높일 수 있다면 플라즈마 촉매 복합공정의 NOx 제거 효율은 매우 높아진다. DBD 반응기 내에서 NO를 NO2로 전환시키는데 가장 중요한 역할을 하는 것 중 하나는 오존 (O$_3$)이다. (중략)

  • PDF

Atmospheric pressure plasma deposition of $SiO_X$ thin films by direct-Type pin-to-plate dielectric barrier discharge for flexible displays

  • Gil, Elly;Lee, June-Hee;Kim, Yang-Su;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1483-1485
    • /
    • 2009
  • Silicon dioxide ($SiO_2$) thin films were deposited using a modified DBD called a "pin-to-plate-type DBD" in order to generate high-density plasmas with a gas mixture of PDMS/$O_2$. The effect of the gas mixture on the physical and chemical properties of $SiO_2$ deposited by the pin-to-plate-type DBD with the mixture of PDMS/$O_2$ was investigated.

  • PDF

Phenol Removal Using Oxygen-Plasma Discharge in the Water (산소-플라즈마 방전을 이용한 수중의 페놀 제거)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.915-923
    • /
    • 2013
  • Decomposition of non-biodegradable contaminants such as phenol contained in water was investigated using a dielectric barrier discharge (DBD) plasma reactor in the aqueous solutions with continuous oxygen bubbling. Effects of various parameters on the removal of phenol in aqueous solution with high-voltage streamer discharge plasma are studied. In order to choose plasma gas, gas of three types (argon, air, oxygen) were investigated. After the selection of gas, effects of 1st voltage (80 ~ 220 V), oxygen flow rate (2 ~ 7 L/min), pH (3 ~ 11), and initial phenol concentration (12.5 ~ 100.0 mg/L) on phenol degradation and change of $UV_{254}$ absorbance were investigated. Absorbance of $UV_{254}$ can be used as an indirect indicator of phenol degradation and the generation and disappearance of the non-biodegradable organic compounds. Removal of phenol and COD were found to follow pseudo first-order kinetics. The removal rate constants for phenol and COD of phenol were $5.204{\times}10^{-1}min^{-1}$ and $3.26{\times}10^{-2}min^{-1}$, respectively.

Development of Multi Dielectric Barrier Discharge Plasma Reactor for Water Treatment (수처리용 다중 유전체 방벽 방전 플라즈마 반응기 개발)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.863-871
    • /
    • 2013
  • Dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. For practical application of the plasma reactor, reactor that can handle large amounts of water are needed. Plasma research to date has focused on small-scale water treatment. This study was carried out basic study for scale-up of a single DBD (dielectric barrier discharge) plasma reactor. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) was used as a performance indicator of multi-plasma reactor. The experiments is divided into two parts: design parameters [effect of distance of single plasma module (1~14 cm), arrangement of ground electrode (single and multi), rector number (1~5) and power number (1~5)]; operation parameter [effect of applied voltage (60~220 V), air flow rate (1~5 L/min), electric conductivity of solution ($1.4{\mu}S/cm$, deionized water)~18.8 mS/cm (addition of NaCl 10 g/L) and pH (5~9)]. Considering the electric stability of the plasma reactor, optimum spacing between the single plasma module was 2 cm. Multi discharge electrodes - single ground electrode array was selected. Combination of power 3-plasma module 5 was the optimal combination for maximum RNO degradation. The optimum 1st voltage and air flow rate for RNO degradation were 180 V and 4 L/min, respectively. The pH and conductivity of the solution was not influencing the RNO degradation.

Degradation of Phenol in Water Using Circulation Dielectric Barrier Plasma Reactors (순환식 유전체 장벽 플라즈마 반응기를 이용한 수중 페놀 처리)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.251-260
    • /
    • 2012
  • Objectives: The purpose of this study was evaluating the applicability of the circulation dielectric barrier plasma process (DBD) for efficiently treating non-biodegradable wastewater, such as phenol. Methods: The DBD plasma reactor system in this study consisted of a plasma reactor (discharge, ground electrode and quartz dielectric tube, external tube), high voltage source, air supply and reservoir. Effects of the operating parameters on the degradation of phenol and $UV_{254}$ absorbance such as first voltage (60-180 V), oxygen supply rate (0.5-3 l/min), liquid circulation rate (1.5-7 l/min), pH (3.02-11.06) and initial phenol concentration (12.5-100 mg/l) were investigated. Results: Experimental results showed that optimum first voltage, oxygen supply rate, and liquid circulation rate on phenol degradation were 160 V, 1 l/min, and 4.5 l/min, respectively. The removal efficiency of phenol increased with the increase in the initial pH of the phenol solution. To obtain a removal efficiency of phenol and COD of phenol of over 97% (initial phenol concentration, 50.0 mg/l), 15 min and 180 minutes was needed, respectively. Conclusions: It was considered that the absorbance of $UV_{254}$ for phenol degradation can be used as an indirect indicator of change in non-biodegradable organic compounds. Mineralization of the phenol solution may take a relatively longer time than that required for phenol degradation.

Sterilization of Food-Borne Pathogenic Bacteria by Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체장벽방전 플라즈마에 의한 식품유해 미생물 살균)

  • Lee, Seung Je;Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.222-227
    • /
    • 2017
  • This study aimed to explore the potential for food-industry application of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganism. The effects of the key parameters such as power, oxygen ratio, exposure time and distance on Escherichia coli KCCM 21052 sterilization by the atmospheric pressure DBD plasma treatment were investigated. The experimental results revealed that increasing the power, exposure time or oxygen ratio and decreasing the exposure distance led to an improvement in the sterilization efficiency of E. coli. Furthermore, the atmospheric pressure DBD plasma (1.0 kW power, 1.0% (v/v) $O_2$, 5 min exposure time and 20 mm exposure distance) treatment was very effective for the sterilization of food-borne pathogenic bacteria. The sterilization rate of E. coli, Bacillus cereus KCCM 40935, Bacillus subtilis KCCM 12027, Bacillus thuringiensis KCCM 11429 and Bacillus atrophaeus KCCM 11314 were 72.3%, 74.6%, 88.5%, 84.7% and 91.3%, respectively.

Influence of DBD Plasma Exposure on Normal and Cancer Cells Activity

  • Panngom, Kamonporn;Baik, Ku-Youn;Ryu, Young-Huo;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.172-172
    • /
    • 2012
  • Non-thermal plasma has attracted medical researchers, since they showed higher apoptosis rate in cancer cells than normal cells. However, it is hard to conclude general cancer cell specific effect because comparison between normal and cancer cell activities after plasma treatment have not been reported yet. This research proposes a comparison of Dielectric Barrier Discharge (DBD) plasma effect on three normal cells lines and three cancer cells lines. We measured cell number, mitochondria activity (MTS assay) and amount of hydrogen peroxide (H2O2) for three days. The results show that the number of cancer cells decreased more than normal cells following of exposure time. On the other hand, mitochondria activities and amounts of H2O2 increased following of exposure time. In addition, we found that DBD plasma exposure on cell suspension in media and media only illustrated no difference in mitochondria activity, H2O2 quantity, and cell number. Thus, we can confirm higher apoptosis rate in cancer cells which is related to the reactive oxygen species (ROS) generated by DBD plasma. The related molecular mechanisms were investigated further.

  • PDF

Performance Enhancement of Gas-Liquid Mixed Plasma Discharge System using High Speed Agitation (고속 교반을 이용한 기-액 혼합 플라즈마방전 시스템의 성능 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.711-717
    • /
    • 2017
  • Dielectric Barrier Discharge (DBD) plasma is a new technique for use in environmental pollutant degradation, which is characterized by the production of hydroxyl radicals as the primary degradation species. Due to the short lifetime of the chemically active species generated during the plasma reaction, the dissolution of the plasma gas has a significant effect on the reaction performance. The plasma reaction performance can be enhanced by combining the basic plasma reactor with a homogenizer system in which the bubbles are destroyed and turned into micro-bubbles. For this purpose, the improvement of the dissolution of plasma gas was evaluated by measuring the RNO (N-dimethyl-4-nitrosoaniline, an indicator of the generation of OH radicals). Experiments were conducted to evaluate the effects of the diameter, rotation speed, and height of the homogenizer, pore size, and number of the diffuser and the applied voltage on the plasma reaction. The results showed that the RNO removal efficiency of the plasma reactor combined with a homogenizer is two times higher than that of the conventional one. The optimum rotor size and rotation speed of the homogenizer were 15.1 mm, and 19,700 rpm, respectively. Except for the lowest pore size distribution of $10-16{\mu}m$, the pore size of the diffuser showed little effect on RNO removal.

Decomposition of Toluene using a 2 Stage Reactor Composed of Dielectric Barrier Discharge and Adsorption Process (DBD와 흡착공정을 조합한 2단형 반응기에서 톨루엔 분해에 관한 연구)

  • 김관태;이웅재;한소영;한의주;최연석;송영훈;김석준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.415-416
    • /
    • 2000
  • 플라즈마 화학공정을 이용한 유해대기오염물질(HAP$_{s}$ 또는 VOC$_{s}$ ) 처리기술은 기존의 촉매연소, 소각 및 흡착기술등에 비하여 낮은 초기 투자비, 여러가스의 동시처리, 소형화 또는 이동 배출원에 대한 적용이 가능하며, 대상가스의 종류나 발생량등에 따라 여러 전원(AC, Pulse, DC)을 이용한 기술개발이 가능하여 많은 연구가 진행되고 있다.$^{(1-4)}$ (중략)

  • PDF