• Title/Summary/Keyword: DARS

Search Result 34, Processing Time 0.022 seconds

Learning of Cooperative Behavior between Robots in Distributed Autonomous Robotic System

  • Hwang, Chel-Min;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.151-156
    • /
    • 2005
  • This paper proposes a Distributed Autonomous Robotic System(DARS) based on an Artificial Immune System(AIS) and a Classifier System(CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in given environment. These actions are composed of two types: aggregation and dispersion. AIS decides one among these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local one. The proposed system will be more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

Object Search Algorithm under Dynamic Programming in the Tree-Type Maze

  • Jang In-Hun;Lee Dong-Hoon;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.333-338
    • /
    • 2005
  • This paper presents the target object search algorithm under Dynamic Programming (DP) in the Tree-type maze. We organized an experimental environment with the concatenation of Y-shape diverged way, small mobile robot, and a target object. By the principle of optimality, the backbone of DP, an agent recognizes that a given whole problem can be solved whether the values of the best solution of certain ancillary problem can be determined according to the principle of optimality. In experiment, we used two different control algorithms: a left-handed method and DP. Finally we verified the efficiency of DP in the practical application using our real robot.

Development of Distributed Autonomous Robotic Systerrt Based on Classifier System and Artificial Immune Network (분류자 시스템과 인공면역네트워크를 이용한 자율 분산 로봇시스템 개발)

  • Sim, Kwee-Bo;Hwang, Chul-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.699-704
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System(DARS) based on an Artificial Immune System(AIS) and a Classifier System(CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIS decides one among these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

A Development of the Autonomous Driving System based on a Precise Digital Map (정밀 지도에 기반한 자율 주행 시스템 개발)

  • Kim, Byoung-Kwang;Lee, Cheol Ha;Kwon, Surim;Jung, Changyoung;Chun, Chang Hwan;Park, Min Woo;Na, Yongcheon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.2
    • /
    • pp.6-12
    • /
    • 2017
  • An autonomous driving system based on a precise digital map is developed. The system is implemented to the Hyundai's Tucsan fuel cell car, which has a camera, smart cruise control (SCC) and Blind spot detection (BSD) radars, 4-Layer LiDARs, and a standard GPS module. The precise digital map has various information such as lanes, speed bumps, crosswalks and land marks, etc. They can be distinguished as lane-level. The system fuses sensed data around the vehicle for localization and estimates the vehicle's location in the precise map. Objects around the vehicle are detected by the sensor fusion system. Collision threat assessment is performed by detecting dangerous vehicles on the precise map. When an obstacle is on the driving path, the system estimates time to collision and slow down the speed. The vehicle has driven autonomously in the Hyundai-Kia Namyang Research Center.

Characteristics of downslope winds in the Liguria Region

  • Burlando, Massimiliano;Tizzi, Marco;Solari, Giovanni
    • Wind and Structures
    • /
    • v.24 no.6
    • /
    • pp.613-635
    • /
    • 2017
  • Strong downslope windstorms often occur in the Liguria Region. This part of North-Western Italy is characterised by an almost continuous mountain range along its West-East axis consisting of Maritime Alps and Apennines, which separate the Padan Plain to the North from the Mediterranean Sea to the South. Along this mountain range many valleys occur, frequently perpendicular to the mountain range axis, where strong gap flows sometimes develop from the top of the mountains ridge to the sea. In the framework of the European projects "Wind and Ports" and "Wind, Ports, and Sea", an anemometric monitoring network made up of 15 (ultra)sonic anemometric stations and 2 LiDARs has been realised in the three main commercial ports of Liguria. Thanks to this network two investigations are herein carried out. First, the wind climatology and the main statistical parameters of one Liguria valley have been studied through the analysis of the measurements taken along a period of 4 years by the anemometer placed at its southern exit. Then, the main characteristics of two strong gap flows that occurred in two distinct valley of Liguria are examined. Both these studies focus, on the one hand, on the climatological and meteorological characterisation of the downslope wind events and, on the other hand, on their most relevant quantities that can affect wind engineering problems.

The Analysis of Accuracy in According to the Registration Methods of Terrestrial LiDAR Data for Indoor Spatial Modeling (건물 실내 공간 모델링을 위한 지상라이다 영상 정합 방법에 따른 정확도 분석)

  • Kim, Hyung-Tae;Pyeon, Mu-Wook;Park, Jae-Sun;Kang, Min-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2008
  • For the indoor spatial modeling by terrestrial LiDAR and the analyzing its positional accuracy result, two terrestrial LiDARs which have different specification each other were used at test site. This paper shows disparity of accuracy between (1) the structural coordinate transformation by point cloud unit using control points and (2) the relative registration among all point cloud units then structural coordinate transformation in bulk, under condition of limited number of control points. As results, the latter had smaller size and distribution of errors than the former although different specifications and acquistion methods are used.

Using Survey information of BIM-applied Project - Construction Industry Specialist Interview - (스마트 건설에서 디지털 측량정보의 활용)

  • Jo, Jae-Hee;Choi, Young-Woo;Lee, Ji-Woo;Kim, Hwan-Yong
    • Journal of KIBIM
    • /
    • v.10 no.3
    • /
    • pp.33-42
    • /
    • 2020
  • Recently, in the smart construction field, it is possible to construct spatial information of 3D data base quickly and accurately using drones, LiDARs and ARs,. Most public ordering institutions are pushing for the efficiency of construction work through establishing and announcing road maps and guidelines for utilizing BIM for the entire life cycle of construction. However, in most policies, the impact of 3D data on the entire life cycle is limited by only partially constructing and utilizing 3D data or by being mentioned. In addition, many public institutions, construction companies and planning companies did not actively utilize survey information during the actual construction phase, despite the possibility of using 3D survey information. In order to confirm the utilization of survey information, a total of eight private construction companies were selected and interviewed by experts. The analysis shows that most of companies lack the performance of drone measurements or have a lack of awareness of advantages, and among them, construction companies are relatively active. Based on these opinions, this study examined the usability of surveying information and examined measures to expand the utilization of survey information in legal and institutional aspects, technology development aspects and industrial development.

The Chromatin Accessibility Landscape of Nonalcoholic Fatty Liver Disease Progression

  • Kang, Byeonggeun;Kang, Byunghee;Roh, Tae-Young;Seong, Rho Hyun;Kim, Won
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.343-352
    • /
    • 2022
  • The advent of the assay for transposase-accessible chromatin using sequencing (ATAC-seq) has shown great potential as a leading method for analyzing the genome-wide profiling of chromatin accessibility. A comprehensive reference to the ATAC-seq dataset for disease progression is important for understanding the regulatory specificity caused by genetic or epigenetic changes. In this study, we present a genome-wide chromatin accessibility profile of 44 liver samples spanning the full histological spectrum of nonalcoholic fatty liver disease (NAFLD). We analyzed the ATAC-seq signal enrichment, fragment size distribution, and correlation coefficients according to the histological severity of NAFLD (healthy control vs steatosis vs fibrotic nonalcoholic steatohepatitis), demonstrating the high quality of the dataset. Consequently, 112,303 merged regions (genomic regions containing one or multiple overlapping peak regions) were identified. Additionally, we found differentially accessible regions (DARs) and performed transcription factor binding motif enrichment analysis and de novo motif analysis to determine new biomarker candidates. These data revealed the gene-regulatory interactions and noncoding factors that can affect NAFLD progression. In summary, our study provides a valuable resource for the human epigenome by applying an advanced approach to facilitate diagnosis and treatment by understanding the non-coding genome of NAFLD.

Validation of Floating LiDAR System for Development of Offshore Wind Farms (해상풍력단지 개발을 위한 부유식 라이다 검증)

  • Lee, Jin-Jae;Kang, Seung-Jin;Lee, Gwang-Se;Kim, Hong-Woo;Kim, Sung-One;Ahn, You-Ock;Kyong, Nam-Ho
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • In this study, a floating LiDAR system (FLS) is investigated through a field test involving two steps. First, correlations among wind speeds, measured using the met mast and two LiDARs, are computed to analyze the acceptance criteria of LiDAR for measuring wind speed. The results of the analysis show that the slopes of single variant regression between mean wind speeds are below 1.03 and the coefficient of determination is above 0.97. Next, correlations among wind speeds measured using the FLS and a fixed LiDAR are determined through a field test carried out in Doomi-doo, Tong-young, Gyeongsangnam-do. The FLS is installed 300 m away from the fixed LiDAR on the ground. The results show that the slope of single variant regression is approximately 1.0275 and the coefficient of determination is above 0.971. According to the IEA/wind 18 recommendation, it is found that the developed FLS measures valid wind speeds to assess wind resources for the development of offshore wind farms.

Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning (신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.312-320
    • /
    • 2020
  • 3D scanning began in the field of manufacturing. In the construction field, a BIM (Building Information Modeling)-based 3D modeling environment was developed and used for the overall construction, such as factory prefabrication, structure construction inspection, plant facility, bridge, tunnel structure inspection using 3D scanning technology. LiDARs have higher accuracy and density than mobile scanners but require longer registration times and data processing. On the other hand, in interior building space management, relatively high accuracy is not needed, and the user can conveniently move with a mobile scan system. This study derives considerations for the development of Simultaneous Localization and Mapping (SLAM)-based Scan Backpack systems that move freely and support real-time point cloud registration. This paper proposes the mobile scan system, framework, and component structure to derive the considerations and improve scan productivity. Prototype development was carried out in two stages, SLAM and ScanBackpack, to derive the considerations and analyze the results.